Rapid eye movement(REM)sleep behavior disorder(RBD)is a parasomnia that is featured by elevated motor behaviors and dream enactments during REM sleep.Clinical observations show that RBD bears significant relevance wit...Rapid eye movement(REM)sleep behavior disorder(RBD)is a parasomnia that is featured by elevated motor behaviors and dream enactments during REM sleep.Clinical observations show that RBD bears significant relevance with several synucleinopathies such as Lewy body dementia and Parkinson disease(PD),and often develops prior to their diagnosis.Being a potential biomarker of PD,investigating the relationship of RBD symptoms and their emergence in developing PD would provide insight intoits pathogenesis.Here,in a chronic model of PD,rats with daily rotenone treatment exhibited key RBD features,including elevated sleep muscle tone,sleep fragmentation and EEG slowing at different time points.Based on detectedearly alpha synuclein aggregation and neural apoptosis in the sublaterodorsal tegmental nucleus(SLD),an area known to promote REM sleep and maintain sleep muscle atonia,the possible involvement of SLD glutamatergic neurons was interrogated.Via chemogenetic activation of SLD glutamatergic neurons,key RBD symptoms and EEG slowing in REM sleep were alleviated.These results are consistent with a progressive degeneration in REM sleep promoting pathways.Our findings provide a foundation for further studies into RBD and its relationship to neurodegenerative diseases.展开更多
The lateral parabrachial nucleus(PBL)is implicated in the regulation of respiratory activity.Sodium leak channel(NALCN)mutations disrupt the respiratory rhythm and influence anesthetic sensitivity in both rodents and ...The lateral parabrachial nucleus(PBL)is implicated in the regulation of respiratory activity.Sodium leak channel(NALCN)mutations disrupt the respiratory rhythm and influence anesthetic sensitivity in both rodents and humans.Here,we investigated whether the NALCN in PBL glutamatergic neurons maintains respiratory function under general anesthesia.Our results showed that chemogenetic activation of PBL glutamatergic neurons increased the respiratory frequency(RF)in mice;whereas chemogenetic inhibition suppressed RF.NALCN knockdown in PBL glutamatergic neurons but not GABAergic neurons significantly reduced RF under physiological conditions and caused more respiratory suppression under sevoflurane anesthesia.NALCN knockdown in PBL glutamatergic neurons did not further exacerbate the respiratory suppression induced by propofol or morphine.Under sevoflurane anesthesia,painful stimuli rapidly increased the RF,which was not affected by NALCN knockdown in PBL glutamatergic neurons.This study suggested that the NALCN is a key ion channel in PBL glutamatergic neurons that maintains respiratory frequency under volatile anesthetic sevoflurane but not intravenous anesthetic propofol.展开更多
Background:Visceral pain induced by pancreatic cancer seriously affects patients’quality of life,and there is no effective treatment,because the mechanism of its neural circuit is unknown.Therefore,the aim of this st...Background:Visceral pain induced by pancreatic cancer seriously affects patients’quality of life,and there is no effective treatment,because the mechanism of its neural circuit is unknown.Therefore,the aim of this study is to explore the main neural circuit mechanism regulating visceral pain induced by pancreatic cancer in mice.Methods:The mouse model of pancreatic cancer visceral pain was established on C57BL/6N mice by pancreatic injection of mPAKPC-luc cells.Abdominal mechanical hyperalgesia and hunch score were performed to assess visceral pain;the pseudorabies virus(PRV)was used to identify the brain regions innervating the pancreas;the c-fos co-labeling method was used to ascertain the types of activated neurons;in vitro electrophysiological patch-clamp technique was used to record the electrophysiological activity of specific neurons;the calcium imaging technique was used to determine the calcium activity of specific neurons;specific neuron destruction and chemogenetics methods were used to explore whether specific neurons were involved in visceral pain induced by pancreatic cancer.Results:The PRV injected into the pancreas was detected in the paraventricular nucleus of the hypothalamus(PVN).Immunofluorescence staining showed that the majority of c-fos were co-labeled with glutamatergic neurons in the PVN.In vitro electrophysiological results showed that the firing frequency of glutamatergic neurons in the PVN was increased.The calcium imaging results showed that the calcium activity of glutamatergic neurons in the PVN was enhanced.Both specific destruction of glutamatergic neurons and chemogenetics inhibition of glutamatergic neurons in the PVN alleviated visceral pain induced by pancreatic cancer.Conclusions:Glutamatergic neurons in the PVN participate in the regulation of visceral pain induced by pancreatic cancer in mice,providing new insights for the discovery of effective targets for the treatment of pancreatic cancer visceral pain.展开更多
Chronic cerebral hypoperfusion can cause progressive demyelination as well as ischemic vascular dementia,however no effective treatments are available.Here,based on magnetic resonance imaging studies of patients with ...Chronic cerebral hypoperfusion can cause progressive demyelination as well as ischemic vascular dementia,however no effective treatments are available.Here,based on magnetic resonance imaging studies of patients with white matter damage,we found that this damage is associated with disorganized cortical structure.In a mouse model,optogenetic activation of glutamatergic neurons in the somatosensory cortex significantly promoted oligodendrocyte progenitor cell(OPC)proliferation,remyelination in the corpus callosum,and recovery of cognitive ability after cerebral hypoperfusion.The therapeutic effect of such stimulation was restricted to the upper layers of the cortex,but also spanned a wide time window after ischemia.Mechanistically,enhancement of glutamatergic neuron-OPC functional synaptic connections is required to achieve the protection effect of activating cortical glutamatergic neurons.Additionally,skin stroking,an easier method to translate into clinical practice,activated the somatosensory cortex,thereby promoting OPC proliferation,remyelination and cognitive recovery following cerebral hypoperfusion.In summary,we demonstrated that activating glutamatergic neurons in the somatosensory cortex promotes the proliferation of OPCs and remyelination to recover cognitive function after chronic cerebral hypoperfusion.It should be noted that this activation may provide new approaches for treating ischemic vascular dementia via the precise regulation of glutamatergic neuron-OPC circuits.展开更多
Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-...Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.展开更多
The lateral hypothalamic area(LHA)plays a pivotal role in regulating consciousness transition,in which orexinergic neurons,GABAergic neurons,and melanin-concentrating hormone neurons are involved.Glutamatergic neurons...The lateral hypothalamic area(LHA)plays a pivotal role in regulating consciousness transition,in which orexinergic neurons,GABAergic neurons,and melanin-concentrating hormone neurons are involved.Glutamatergic neurons have a large population in the LHA,but their anesthesia-related effect has not been explored.Here,we found that genetic ablation of LHA glutamatergic neurons shortened the induction time and prolonged the recovery time of isoflurane anesthesia in mice.In contrast,chemogenetic activation of LHA glutamatergic neurons increased the time to anesthesia and decreased the time to recovery.Optogenetic activation of LHA glutamatergic neurons during the maintenance of anesthesia reduced the burst suppression pattern of the electroencephalogram(EEG)and shifted EEG features to an arousal pattern.Photostimulation of LHA glutamatergic projections to the lateral habenula(LHb)also facilitated the emergence from anesthesia and the transition of anesthesia depth to a lighter level.Collectively,LHA glutamatergic neurons and their projections to the LHb regulate anesthetic potency and EEG features.展开更多
Activation of the heart normally begins in the sinoatrial node(SAN).Electrical impulses spontaneously released by SAN pacemaker cells(SANPCs)trigger the contraction of the heart.However,the cellular nature of SANPCs r...Activation of the heart normally begins in the sinoatrial node(SAN).Electrical impulses spontaneously released by SAN pacemaker cells(SANPCs)trigger the contraction of the heart.However,the cellular nature of SANPCs remains controversial.Here,we report that SANPCs exhibit glutamatergic neuron-like properties.By comparing the single-cell transcriptome of SANPCs with that of cells from primary visual cortex in mouse,we found that SANPCs co-clustered with cortical neurons.Tissue and cellular imaging confirmed that SANPCs contained key elements of glutamatergic neurotransmitter system,expressing genes encoding glutamate synthesis pathway(G/s),ionotropic and metabotropic glutamate receptors(Grina,Gria3,Grm1 and Grm5)t and glutamate transporters(Slc17a7).SANPCs highly expressed cell markers of glutamatergic neurons(Snap25 and S/-c17a7)t whereas Gad1,a marker of GABAergic neurons,was negative.Functional studies revealed that inhibition of glutamate receptors or transporters reduced spontaneous pacing frequency of isolated SAN tissues and spontaneous Ca2+transients frequency in single SANPC.Collectively,our work suggests that SANPCs share dominant biological properties with glutamatergic neurons,and the glutamatergic neurotransmitter system may act as an intrinsic regulation module of heart rhythm,which provides a potential intervention target for pacemaker cell-associated arrhythmias.展开更多
Sleep benefits the restoration of energy metabolism and thereby suppo rts neuronal plasticity and cognitive behaviors.Sirt6 is a NAD+-dependent protein deacetylase that has been recognized as an essential regulator of...Sleep benefits the restoration of energy metabolism and thereby suppo rts neuronal plasticity and cognitive behaviors.Sirt6 is a NAD+-dependent protein deacetylase that has been recognized as an essential regulator of energy metabolism because it modulates various transcriptional regulators and metabolic enzymes.The aim of this study was to investigate the influence of Sirt6 on cerebral function after chronic sleep deprivation(CSD).We assigned C57BL/6J mice to control or two CSD groups and subjected them to AAV2/9-CMV-EGFP or AAV2/9-CMV-Sirt6-EGFP infection in the prelimbic cortex(PrL).We then assessed cerebral functional connectivity(FC) using resting-state functional MRI,neuron/astrocyte metabolism using a metabolic kinetics analysis;dendritic spine densities using sparse-labeling;and miniature excitato ry postsynaptic currents(mEPSCs) and action potential(AP) firing rates using whole-cell patchclamp recordings.In addition,we evaluated cognition via a comprehensive set of behavioral tests.Compared with controls,Sirt6 was significantly decreased(P<0.05) in the PrL after CSD,accompanied by cognitive deficits and decreased FC between the PrL and accumbens nucleus,piriform cortex,motor co rtex,somatosensory co rtex,olfactory tubercle,insular cortex,and cerebellum.Sirt6 ove rexpression reve rsed CSD-induced cognitive impairment and reduced FC.Our analysis of metabolic kinetics using [1-13C] glucose and [2-13C] acetate showed that CSD reduced neuronal Glu4and GABA2synthesis,which could be fully restored via forced Sirt6 expression.Furthermore,Sirt6 ove rexpression reversed CSD-induced decreases in AP firing rates as well as the frequency and amplitude of mEPSCs in PrL pyramidal neurons.These data indicate that Sirt6 can improve cognitive impairment after CSD by regulating the PrL-associated FC network,neuronal glucose metabolism,and glutamatergic neurotransmission.Thus,Sirt6 activation may have potential as a novel strategy for treating sleep disorder-related diseases.展开更多
OBJECTIVE Chronic cerebral hy⁃poperfusion can lead to progressive demyelin⁃ation and ischemic vascular dementia,yet there are no effective treatments.METHODS Magnetic resonance imaging was employed in patients with wh...OBJECTIVE Chronic cerebral hy⁃poperfusion can lead to progressive demyelin⁃ation and ischemic vascular dementia,yet there are no effective treatments.METHODS Magnetic resonance imaging was employed in patients with white matter damage,and optogenetics and skin stroking were exerted to activate glutamater⁃gic neurons in the somatosensory cortex in a clas⁃sical mouse model of ischemia vascular dementia.RESULTS White matter damage was correlated with disrupted cortical structure from MRI results.In a mouse model,activating glutamatergic neu⁃rons in the somatosensory cortex promotes prolif⁃eration of OPCs and remyelination to rescue cog⁃nitive impairment after chronic cerebral hypoper⁃fusion.Such therapeutic action was limited to stimulation with moderate intensity at the upper layers of the cortex,but was achieved over a wide time window after ischemia.Mechanistically,enhanced glutamatergic neuron-OPC functional synaptic connections are required for protection from activation of cortical glutamatergic neurons.Finally,skin stroking activation of the somatosen⁃sory cortex,an easier approach for clinical trans⁃lation,promoted OPC proliferation and remyelin⁃ation as well as cognitive recovery after cerebral hypoperfusion.CONCLUSION Activation of gluta⁃matergic neurons in the somatosensory cortex may serve as novel approaches for treating isch⁃emic vascular dementia through precise modula⁃tion of glutamatergic neuron-OPC circuits.展开更多
Social dysfunction is a risk factor for several neuropsychiatric illnesses.Previous studies have shown that the lateral septum(LS)-related pathway plays a critical role in mediating social behaviors.Howeve r,the role ...Social dysfunction is a risk factor for several neuropsychiatric illnesses.Previous studies have shown that the lateral septum(LS)-related pathway plays a critical role in mediating social behaviors.Howeve r,the role of the connections between the LS and its downstream brain regions in social behavio rs remains unclea r.In this study,we conducted a three-chamber test using electrophysiological and chemogenetic approaches in mice to determine how LS projections to ventral CA1(vCA1)influence sociability.Our res ults showed that gamma-aminobutyric acid(GABA)-e rgic neuro ns were activated following social experience,and that social behavio rs were enhanced by chemogenetic modulation of these neurons.Moreover,LS GABAergic neurons extended their functional neural connections via vCA1 glutamatergic pyramidal neurons,and regulating LSGABA→vCA1Gluneural projections affected social behaviors,which were impeded by suppressing LSprojecting vCA1 neuronal activity or inhibiting GABAAreceptors in vCA1.These findings support the hypothesis that LS inputs to the vCA1 can control social prefe rences and social novelty behaviors.These findings provide new insights rega rding the neural circuits that regulate sociability.展开更多
Anxiety disorders are one of the most epidemic and chronic psychiatric disorders.An incom-plete understanding of anxiety pathophysiology has limited the development of highly effective drugs against these disorders.GP...Anxiety disorders are one of the most epidemic and chronic psychiatric disorders.An incom-plete understanding of anxiety pathophysiology has limited the development of highly effective drugs against these disorders.GPR17 has been shown to be involved in multiple sclerosis and some acute brain injury disorders.However,no study has investigated the role of GPR17 in psychiatric disorders.In a well-established chronic restraint stress(CRS)mouse model,using a combination of pharmacological and molecular biology techniques,viral tracing,in vitro electrophysiology recordings,in vivo fiber photom-etry,chemogenetic manipulations and behavioral tests,we demonstrated that CRS induced anxiety-like behaviors and increased the expression of GPR17 in basolateral amygdala(BLA)glutamatergic neurons.Inhibition of GPR17 by cangrelor or knockdown of GPR17 by adeno-associated virus in BLA glutama-tergic neurons effectively improved anxiety-like behaviors.Overexpression of GPR17 in BLA glutama-tergic neurons increased the susceptibility to anxiety-like behaviors.What's more,BLA glutamatergic neuronal activity was required for anxiolytic-like effects of GPR17 antagonist and GPR17 modulated anxiety-like behaviors via BLA to ventral hippocampal CAl glutamatergic projection.Our study finds for the first and highlights the new role of GPR17 in regulating anxiety-like behaviors and it might be a novel potential target for therapy of anxiety disorders.展开更多
Objective Alzheimer’s disease(AD)has become a significant global concern,but effective drugs able to slow down AD progression is still lacked.Electroacupuncture(EA)has been demonstrated to ameliorate cognitive impair...Objective Alzheimer’s disease(AD)has become a significant global concern,but effective drugs able to slow down AD progression is still lacked.Electroacupuncture(EA)has been demonstrated to ameliorate cognitive impairment in individuals with AD.However,the underlying mechanisms remains poorly understood.This study aimed at examining the neuroprotective properties of EA and its potential mechanism of action against AD.Methods APP/PS1 transgenic mice were employed to evaluate the protective effects of EA on Shenshu(BL 23)and Baihui(GV 20).Chemogenetic manipulation was used to activate or inhibit serotonergic neurons within the dorsal raphe nucleus(DRN).Learning and memory abilities were assessed by the novel object recognition and Morris water maze tests.Golgi staining,western blot,and immunostaining were utilized to determine EA-induced neuroprotection.Results EA at Shenshu(BL 23)and Baihui(GV 20)effectively ameliorated learning and memory impairments in APP/PS1 mice.EA attenuated dendritic spine loss,increased the expression levels of PSD95,synaptophysin,and brain-derived neurotrophic factor in hippocampus.Activation of serotonergic neurons within the DRN can ameliorate cognitive deficits in AD by activating glutamatergic neurons mediated by 5-HT1B.Chemogenetic inhibition of serotonergic neurons in the DRN reversed the effects of EA on synaptic plasticity and memory.Conclusion EA can alleviate cognitive dysfunction in APP/PS1 mice by activating serotonergic neurons in the DRN.Further study is necessary to better understand how the serotonergic neurons-related neural circuits involves in EA-induced memory improvement in AD.展开更多
The superior colliculus(SC),one of the most well-characterized midbrain sensorimotor structures where visual,auditory,and somatosensory information are integrated to initiate motor commands,is highly conserved across ...The superior colliculus(SC),one of the most well-characterized midbrain sensorimotor structures where visual,auditory,and somatosensory information are integrated to initiate motor commands,is highly conserved across vertebrate evolution.Moreover,cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors.This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets.We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions.The systematic delineation of SC organization,cell types,and neural connections is further put into context across species as these depend upon laminar architecture.Moreover,we focus on SC neural circuitry involving saccadic eye movement,and cognitive and innate behaviors.Overall,the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.展开更多
基金The project supported by the HKGRCGRF gran(t14111715)
文摘Rapid eye movement(REM)sleep behavior disorder(RBD)is a parasomnia that is featured by elevated motor behaviors and dream enactments during REM sleep.Clinical observations show that RBD bears significant relevance with several synucleinopathies such as Lewy body dementia and Parkinson disease(PD),and often develops prior to their diagnosis.Being a potential biomarker of PD,investigating the relationship of RBD symptoms and their emergence in developing PD would provide insight intoits pathogenesis.Here,in a chronic model of PD,rats with daily rotenone treatment exhibited key RBD features,including elevated sleep muscle tone,sleep fragmentation and EEG slowing at different time points.Based on detectedearly alpha synuclein aggregation and neural apoptosis in the sublaterodorsal tegmental nucleus(SLD),an area known to promote REM sleep and maintain sleep muscle atonia,the possible involvement of SLD glutamatergic neurons was interrogated.Via chemogenetic activation of SLD glutamatergic neurons,key RBD symptoms and EEG slowing in REM sleep were alleviated.These results are consistent with a progressive degeneration in REM sleep promoting pathways.Our findings provide a foundation for further studies into RBD and its relationship to neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China(82271290 and 82301403)the Natural Science Foundation of Sichuan Province(2022NSFSC1399)+1 种基金the Health Commission of Sichuan Province(21PJ014)the Key R&D(Major Science and Technology Project)of the Sichuan Science and Technology Department(2023YFS0138 and 2023ZYD0168).
文摘The lateral parabrachial nucleus(PBL)is implicated in the regulation of respiratory activity.Sodium leak channel(NALCN)mutations disrupt the respiratory rhythm and influence anesthetic sensitivity in both rodents and humans.Here,we investigated whether the NALCN in PBL glutamatergic neurons maintains respiratory function under general anesthesia.Our results showed that chemogenetic activation of PBL glutamatergic neurons increased the respiratory frequency(RF)in mice;whereas chemogenetic inhibition suppressed RF.NALCN knockdown in PBL glutamatergic neurons but not GABAergic neurons significantly reduced RF under physiological conditions and caused more respiratory suppression under sevoflurane anesthesia.NALCN knockdown in PBL glutamatergic neurons did not further exacerbate the respiratory suppression induced by propofol or morphine.Under sevoflurane anesthesia,painful stimuli rapidly increased the RF,which was not affected by NALCN knockdown in PBL glutamatergic neurons.This study suggested that the NALCN is a key ion channel in PBL glutamatergic neurons that maintains respiratory frequency under volatile anesthetic sevoflurane but not intravenous anesthetic propofol.
基金supported by Shanghai Municipal Science and Technology Major Project(Grant No.23Y11908100 to M.X.)Cross-disciplinary Research Fund of Shanghai Ninth People’s Hospital,Shanghai JiaoTong University School of Medicine(Grant No.JYJC202312 to M.X.)Postdoctoral Research Start-up Fund of Shanghai Ninth People’s Hospital,Shanghai JiaoTong University School of Medicine(to N.N.J.).
文摘Background:Visceral pain induced by pancreatic cancer seriously affects patients’quality of life,and there is no effective treatment,because the mechanism of its neural circuit is unknown.Therefore,the aim of this study is to explore the main neural circuit mechanism regulating visceral pain induced by pancreatic cancer in mice.Methods:The mouse model of pancreatic cancer visceral pain was established on C57BL/6N mice by pancreatic injection of mPAKPC-luc cells.Abdominal mechanical hyperalgesia and hunch score were performed to assess visceral pain;the pseudorabies virus(PRV)was used to identify the brain regions innervating the pancreas;the c-fos co-labeling method was used to ascertain the types of activated neurons;in vitro electrophysiological patch-clamp technique was used to record the electrophysiological activity of specific neurons;the calcium imaging technique was used to determine the calcium activity of specific neurons;specific neuron destruction and chemogenetics methods were used to explore whether specific neurons were involved in visceral pain induced by pancreatic cancer.Results:The PRV injected into the pancreas was detected in the paraventricular nucleus of the hypothalamus(PVN).Immunofluorescence staining showed that the majority of c-fos were co-labeled with glutamatergic neurons in the PVN.In vitro electrophysiological results showed that the firing frequency of glutamatergic neurons in the PVN was increased.The calcium imaging results showed that the calcium activity of glutamatergic neurons in the PVN was enhanced.Both specific destruction of glutamatergic neurons and chemogenetics inhibition of glutamatergic neurons in the PVN alleviated visceral pain induced by pancreatic cancer.Conclusions:Glutamatergic neurons in the PVN participate in the regulation of visceral pain induced by pancreatic cancer in mice,providing new insights for the discovery of effective targets for the treatment of pancreatic cancer visceral pain.
基金We would like to thank the Core Facilities,Zhejiang University School of Medicine for technical support.This work was supported by the National Natural Science Foundation of China(81973302,81903580)the National Key R&D Program of China(2020YFA0803900)the Zhejiang Provincial Natural Science Foundation of China(LR17H310001,LYY22H310003).
文摘Chronic cerebral hypoperfusion can cause progressive demyelination as well as ischemic vascular dementia,however no effective treatments are available.Here,based on magnetic resonance imaging studies of patients with white matter damage,we found that this damage is associated with disorganized cortical structure.In a mouse model,optogenetic activation of glutamatergic neurons in the somatosensory cortex significantly promoted oligodendrocyte progenitor cell(OPC)proliferation,remyelination in the corpus callosum,and recovery of cognitive ability after cerebral hypoperfusion.The therapeutic effect of such stimulation was restricted to the upper layers of the cortex,but also spanned a wide time window after ischemia.Mechanistically,enhancement of glutamatergic neuron-OPC functional synaptic connections is required to achieve the protection effect of activating cortical glutamatergic neurons.Additionally,skin stroking,an easier method to translate into clinical practice,activated the somatosensory cortex,thereby promoting OPC proliferation,remyelination and cognitive recovery following cerebral hypoperfusion.In summary,we demonstrated that activating glutamatergic neurons in the somatosensory cortex promotes the proliferation of OPCs and remyelination to recover cognitive function after chronic cerebral hypoperfusion.It should be noted that this activation may provide new approaches for treating ischemic vascular dementia via the precise regulation of glutamatergic neuron-OPC circuits.
基金supported by the National Natural Science Foundation of China,Nos.32371065(to CL)and 32170950(to LY)the Natural Science Foundation of the Guangdong Province,No.2023A1515010899(to CL)the Science and Technology Projects in Guangzhou,Nos.2023A4J0578 and 2024A03J0180(to CW)。
文摘Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.
基金the National Natural Science Foundation of China(81571351,81620108012,81671373,and 81771427)a Discipline Promotion Project of Xijing Hospital(XJZT18MJ33).
文摘The lateral hypothalamic area(LHA)plays a pivotal role in regulating consciousness transition,in which orexinergic neurons,GABAergic neurons,and melanin-concentrating hormone neurons are involved.Glutamatergic neurons have a large population in the LHA,but their anesthesia-related effect has not been explored.Here,we found that genetic ablation of LHA glutamatergic neurons shortened the induction time and prolonged the recovery time of isoflurane anesthesia in mice.In contrast,chemogenetic activation of LHA glutamatergic neurons increased the time to anesthesia and decreased the time to recovery.Optogenetic activation of LHA glutamatergic neurons during the maintenance of anesthesia reduced the burst suppression pattern of the electroencephalogram(EEG)and shifted EEG features to an arousal pattern.Photostimulation of LHA glutamatergic projections to the lateral habenula(LHb)also facilitated the emergence from anesthesia and the transition of anesthesia depth to a lighter level.Collectively,LHA glutamatergic neurons and their projections to the LHb regulate anesthetic potency and EEG features.
基金The scRNA-seq data of mouse SANPCs in this study have been deposited in the NCBI Sequence Read Archive(accession number SRP192665)The single-cell expression matrix of primary visual CCs was downloaded from Gene Expression Omnibus as reported(GSE71585)Embryonic SAN and adjacent atrial cell data were obtained from Gene Expression Omnibus(GSE130461).
文摘Activation of the heart normally begins in the sinoatrial node(SAN).Electrical impulses spontaneously released by SAN pacemaker cells(SANPCs)trigger the contraction of the heart.However,the cellular nature of SANPCs remains controversial.Here,we report that SANPCs exhibit glutamatergic neuron-like properties.By comparing the single-cell transcriptome of SANPCs with that of cells from primary visual cortex in mouse,we found that SANPCs co-clustered with cortical neurons.Tissue and cellular imaging confirmed that SANPCs contained key elements of glutamatergic neurotransmitter system,expressing genes encoding glutamate synthesis pathway(G/s),ionotropic and metabotropic glutamate receptors(Grina,Gria3,Grm1 and Grm5)t and glutamate transporters(Slc17a7).SANPCs highly expressed cell markers of glutamatergic neurons(Snap25 and S/-c17a7)t whereas Gad1,a marker of GABAergic neurons,was negative.Functional studies revealed that inhibition of glutamate receptors or transporters reduced spontaneous pacing frequency of isolated SAN tissues and spontaneous Ca2+transients frequency in single SANPC.Collectively,our work suggests that SANPCs share dominant biological properties with glutamatergic neurons,and the glutamatergic neurotransmitter system may act as an intrinsic regulation module of heart rhythm,which provides a potential intervention target for pacemaker cell-associated arrhythmias.
基金National Natural Science Foundation of China,Nos.81771160 (to ZZ),81671060 (to CC),31970973 (to JW),21921004 (to FX)Translational Medicine and In terdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University,No.ZNJC201934 (to ZZ)。
文摘Sleep benefits the restoration of energy metabolism and thereby suppo rts neuronal plasticity and cognitive behaviors.Sirt6 is a NAD+-dependent protein deacetylase that has been recognized as an essential regulator of energy metabolism because it modulates various transcriptional regulators and metabolic enzymes.The aim of this study was to investigate the influence of Sirt6 on cerebral function after chronic sleep deprivation(CSD).We assigned C57BL/6J mice to control or two CSD groups and subjected them to AAV2/9-CMV-EGFP or AAV2/9-CMV-Sirt6-EGFP infection in the prelimbic cortex(PrL).We then assessed cerebral functional connectivity(FC) using resting-state functional MRI,neuron/astrocyte metabolism using a metabolic kinetics analysis;dendritic spine densities using sparse-labeling;and miniature excitato ry postsynaptic currents(mEPSCs) and action potential(AP) firing rates using whole-cell patchclamp recordings.In addition,we evaluated cognition via a comprehensive set of behavioral tests.Compared with controls,Sirt6 was significantly decreased(P<0.05) in the PrL after CSD,accompanied by cognitive deficits and decreased FC between the PrL and accumbens nucleus,piriform cortex,motor co rtex,somatosensory co rtex,olfactory tubercle,insular cortex,and cerebellum.Sirt6 ove rexpression reve rsed CSD-induced cognitive impairment and reduced FC.Our analysis of metabolic kinetics using [1-13C] glucose and [2-13C] acetate showed that CSD reduced neuronal Glu4and GABA2synthesis,which could be fully restored via forced Sirt6 expression.Furthermore,Sirt6 ove rexpression reversed CSD-induced decreases in AP firing rates as well as the frequency and amplitude of mEPSCs in PrL pyramidal neurons.These data indicate that Sirt6 can improve cognitive impairment after CSD by regulating the PrL-associated FC network,neuronal glucose metabolism,and glutamatergic neurotransmission.Thus,Sirt6 activation may have potential as a novel strategy for treating sleep disorder-related diseases.
文摘OBJECTIVE Chronic cerebral hy⁃poperfusion can lead to progressive demyelin⁃ation and ischemic vascular dementia,yet there are no effective treatments.METHODS Magnetic resonance imaging was employed in patients with white matter damage,and optogenetics and skin stroking were exerted to activate glutamater⁃gic neurons in the somatosensory cortex in a clas⁃sical mouse model of ischemia vascular dementia.RESULTS White matter damage was correlated with disrupted cortical structure from MRI results.In a mouse model,activating glutamatergic neu⁃rons in the somatosensory cortex promotes prolif⁃eration of OPCs and remyelination to rescue cog⁃nitive impairment after chronic cerebral hypoper⁃fusion.Such therapeutic action was limited to stimulation with moderate intensity at the upper layers of the cortex,but was achieved over a wide time window after ischemia.Mechanistically,enhanced glutamatergic neuron-OPC functional synaptic connections are required for protection from activation of cortical glutamatergic neurons.Finally,skin stroking activation of the somatosen⁃sory cortex,an easier approach for clinical trans⁃lation,promoted OPC proliferation and remyelin⁃ation as well as cognitive recovery after cerebral hypoperfusion.CONCLUSION Activation of gluta⁃matergic neurons in the somatosensory cortex may serve as novel approaches for treating isch⁃emic vascular dementia through precise modula⁃tion of glutamatergic neuron-OPC circuits.
基金supported by the National Natural Science Foundation of China,No.82171521(to CL)the Special Funds ofTaishan Scholars Project of Shandong Province,No.tsqn202211368(to CL)+2 种基金the Natural Science Foundation of Shandong Province,Nos.ZR2022YQ65(to CL),ZR2021MH073(to CL),ZR2019PH109(to WW)the Projects of Medical and Health Technology Development Program in Shandong Province,China,Nos.202003090720(to DZ),202003070728(to JL),2019 WS329(to DW)the Scientific Research Foundation of Binzhou Medical University,No.BY2018KJ21(to DW)。
文摘Social dysfunction is a risk factor for several neuropsychiatric illnesses.Previous studies have shown that the lateral septum(LS)-related pathway plays a critical role in mediating social behaviors.Howeve r,the role of the connections between the LS and its downstream brain regions in social behavio rs remains unclea r.In this study,we conducted a three-chamber test using electrophysiological and chemogenetic approaches in mice to determine how LS projections to ventral CA1(vCA1)influence sociability.Our res ults showed that gamma-aminobutyric acid(GABA)-e rgic neuro ns were activated following social experience,and that social behavio rs were enhanced by chemogenetic modulation of these neurons.Moreover,LS GABAergic neurons extended their functional neural connections via vCA1 glutamatergic pyramidal neurons,and regulating LSGABA→vCA1Gluneural projections affected social behaviors,which were impeded by suppressing LSprojecting vCA1 neuronal activity or inhibiting GABAAreceptors in vCA1.These findings support the hypothesis that LS inputs to the vCA1 can control social prefe rences and social novelty behaviors.These findings provide new insights rega rding the neural circuits that regulate sociability.
基金National Natural Science Foundation of China(82373860 and 82071202 to Susu Tang,82173805 to Hao Hong)National Innovation and Entrepreneurship Training Program for Undergraduate(202410316198,China).
文摘Anxiety disorders are one of the most epidemic and chronic psychiatric disorders.An incom-plete understanding of anxiety pathophysiology has limited the development of highly effective drugs against these disorders.GPR17 has been shown to be involved in multiple sclerosis and some acute brain injury disorders.However,no study has investigated the role of GPR17 in psychiatric disorders.In a well-established chronic restraint stress(CRS)mouse model,using a combination of pharmacological and molecular biology techniques,viral tracing,in vitro electrophysiology recordings,in vivo fiber photom-etry,chemogenetic manipulations and behavioral tests,we demonstrated that CRS induced anxiety-like behaviors and increased the expression of GPR17 in basolateral amygdala(BLA)glutamatergic neurons.Inhibition of GPR17 by cangrelor or knockdown of GPR17 by adeno-associated virus in BLA glutama-tergic neurons effectively improved anxiety-like behaviors.Overexpression of GPR17 in BLA glutama-tergic neurons increased the susceptibility to anxiety-like behaviors.What's more,BLA glutamatergic neuronal activity was required for anxiolytic-like effects of GPR17 antagonist and GPR17 modulated anxiety-like behaviors via BLA to ventral hippocampal CAl glutamatergic projection.Our study finds for the first and highlights the new role of GPR17 in regulating anxiety-like behaviors and it might be a novel potential target for therapy of anxiety disorders.
基金supported by grants from the Shenzhen Science and Technology Program(No.2021-22154)National Natural Science Foundation of China(No.82205271,No.82374564,and No.82074566)+1 种基金Wuhan Medical Research Project(No.WZ21Q09)Key Chinese Medicine Project of Hubei Provincial Natural Science Foundation(No.2023AFD112).
文摘Objective Alzheimer’s disease(AD)has become a significant global concern,but effective drugs able to slow down AD progression is still lacked.Electroacupuncture(EA)has been demonstrated to ameliorate cognitive impairment in individuals with AD.However,the underlying mechanisms remains poorly understood.This study aimed at examining the neuroprotective properties of EA and its potential mechanism of action against AD.Methods APP/PS1 transgenic mice were employed to evaluate the protective effects of EA on Shenshu(BL 23)and Baihui(GV 20).Chemogenetic manipulation was used to activate or inhibit serotonergic neurons within the dorsal raphe nucleus(DRN).Learning and memory abilities were assessed by the novel object recognition and Morris water maze tests.Golgi staining,western blot,and immunostaining were utilized to determine EA-induced neuroprotection.Results EA at Shenshu(BL 23)and Baihui(GV 20)effectively ameliorated learning and memory impairments in APP/PS1 mice.EA attenuated dendritic spine loss,increased the expression levels of PSD95,synaptophysin,and brain-derived neurotrophic factor in hippocampus.Activation of serotonergic neurons within the DRN can ameliorate cognitive deficits in AD by activating glutamatergic neurons mediated by 5-HT1B.Chemogenetic inhibition of serotonergic neurons in the DRN reversed the effects of EA on synaptic plasticity and memory.Conclusion EA can alleviate cognitive dysfunction in APP/PS1 mice by activating serotonergic neurons in the DRN.Further study is necessary to better understand how the serotonergic neurons-related neural circuits involves in EA-induced memory improvement in AD.
基金This review was supported by the Key-Area Research and Development Program of Guangdong Province(2018B030331001)the National Natural Science Foundation of China(31630031 and 31930047)+3 种基金the Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence Fund(2019025),the Guangdong Provincial Key Laboratory of Brain Connectome and Behavior(2017B030301017)the Chinese Academy of Sciences International Partnership Program(172644KYSB20170004)the CAS President’s International Fellowship for Distinguished Scientists(2021DB0003)the Canadian Institutes of Health Research(#10677).
文摘The superior colliculus(SC),one of the most well-characterized midbrain sensorimotor structures where visual,auditory,and somatosensory information are integrated to initiate motor commands,is highly conserved across vertebrate evolution.Moreover,cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors.This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets.We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions.The systematic delineation of SC organization,cell types,and neural connections is further put into context across species as these depend upon laminar architecture.Moreover,we focus on SC neural circuitry involving saccadic eye movement,and cognitive and innate behaviors.Overall,the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.