Aging and death are unavoidable in life. While immortality may be impossible, many people dream of living a long and healthy life. Throughout history, humans have searched for ways to stay young, but have not found an...Aging and death are unavoidable in life. While immortality may be impossible, many people dream of living a long and healthy life. Throughout history, humans have searched for ways to stay young, but have not found an effective way. This may be because the methods used do not target the causes of aging directly. To address this, we investigated how to delay aging using traditional Chinese medicine (TCM) and Western medicine approaches. In this article, we will explain the causes of aging in the context of TCM and Western medicine and suggest methods to delay it. By integrating TCM and Western medicine, I hope to help everyone age healthily and enjoy a long life.展开更多
The intracellular retention of nanotherapeutics is essential for their therapeutic activity.The immobilization of nanotherapeutics inside target cell types can regulate various cell behaviors.However,strategies for th...The intracellular retention of nanotherapeutics is essential for their therapeutic activity.The immobilization of nanotherapeutics inside target cell types can regulate various cell behaviors.However,strategies for the intracellular immobilization of nanoparticles are limited.Herein,a cisplatin prodrug was synthesized and utilized as a glutathione(GSH)-activated linker to induce aggregation of the cisplatin prodrug/IR820/docetaxel nanoassembly.The nanoassembly has been reprogrammed with peptidecontaining moieties for tumor-targeting and PD-1/PD-L1 blockade.The aggregation of the nanoassemblies is dependent on GSH concentration.Evaluations in vitro and in vivo revealed that GSH-induced intracellular aggregation of the nanoassemblies enhances therapeutic activity in primary tumors by enhancing the accumulation and prolonging the retention of the chemotherapeutics in the tumor site and inducing reactive oxygen species(ROS)generation and immunogenic cell death.Moreover,the nanoassemblies reinvigorate the immunocytes,especially the systemic immunocytes,and thereby alleviate pulmonary metastasis,even though the population of immunocytes in the primary tumor site is suppressed due to the enhanced accumulation of chemotherapeutics.This strategy provides a promising option for the intracellular immobilization of nanoparticles in vitro and in vivo.展开更多
The key to improve the therapeutic efficacy for cancer treatment is to increase the delivery of drugs to tumors.For this purpose, tumor-microenvironment stimuliresponsive materials have great potential. Here, we prepa...The key to improve the therapeutic efficacy for cancer treatment is to increase the delivery of drugs to tumors.For this purpose, tumor-microenvironment stimuliresponsive materials have great potential. Here, we prepared a new nanomedicine by bonding the conjugate of honokiol(HNK) and 5,6-dimethylxanthenone-4-acetic acid(DMXAA)to a glutathione(GSH)-responsive nanocarrier, poly(α-lipoic acid) polyethylene glycol. The nanomedicine would disintegrate due to the high level of GSH at the tumor sites,achieving the co-delivery of HNK and DMXAA, and realizing the combination therapy through close-range killing by HNK and long-range striking by DMXAA together. In a murine 4T1 breast tumor model, this strategy exhibited high tumor inhibition rate of 93%, and provided a valuable therapeutic choice for cancer therapy.展开更多
文摘Aging and death are unavoidable in life. While immortality may be impossible, many people dream of living a long and healthy life. Throughout history, humans have searched for ways to stay young, but have not found an effective way. This may be because the methods used do not target the causes of aging directly. To address this, we investigated how to delay aging using traditional Chinese medicine (TCM) and Western medicine approaches. In this article, we will explain the causes of aging in the context of TCM and Western medicine and suggest methods to delay it. By integrating TCM and Western medicine, I hope to help everyone age healthily and enjoy a long life.
基金financially supported by the State Key Program of National Natural Science Foundation of China(31930067)the National Natural Science Fund for Distinguished Young Scholar(NSFC31525009,China)+3 种基金National Natural Science Funds(NSFC31771096,NSFC31871008,and NSFC31500809,China)the China Postdoctoral Science Foundation(2018M643484)1·3·5 project for disciplines of excellence,West China Hospital,Sichuan University(ZYGD18002,China)the Post-Doctor Research Project,West China Hospital,Sichuan University(18HXBH038,China)。
文摘The intracellular retention of nanotherapeutics is essential for their therapeutic activity.The immobilization of nanotherapeutics inside target cell types can regulate various cell behaviors.However,strategies for the intracellular immobilization of nanoparticles are limited.Herein,a cisplatin prodrug was synthesized and utilized as a glutathione(GSH)-activated linker to induce aggregation of the cisplatin prodrug/IR820/docetaxel nanoassembly.The nanoassembly has been reprogrammed with peptidecontaining moieties for tumor-targeting and PD-1/PD-L1 blockade.The aggregation of the nanoassemblies is dependent on GSH concentration.Evaluations in vitro and in vivo revealed that GSH-induced intracellular aggregation of the nanoassemblies enhances therapeutic activity in primary tumors by enhancing the accumulation and prolonging the retention of the chemotherapeutics in the tumor site and inducing reactive oxygen species(ROS)generation and immunogenic cell death.Moreover,the nanoassemblies reinvigorate the immunocytes,especially the systemic immunocytes,and thereby alleviate pulmonary metastasis,even though the population of immunocytes in the primary tumor site is suppressed due to the enhanced accumulation of chemotherapeutics.This strategy provides a promising option for the intracellular immobilization of nanoparticles in vitro and in vivo.
基金supported by the Ministry of Science and Technology of China (2018ZX09711003-012)the National Natural Science Foundation of China (51873206, 51673189, 51829302, 51503202, 51833010 and 51520105004)the Program of Scientific Development of Jilin Province (20190103033JH)
文摘The key to improve the therapeutic efficacy for cancer treatment is to increase the delivery of drugs to tumors.For this purpose, tumor-microenvironment stimuliresponsive materials have great potential. Here, we prepared a new nanomedicine by bonding the conjugate of honokiol(HNK) and 5,6-dimethylxanthenone-4-acetic acid(DMXAA)to a glutathione(GSH)-responsive nanocarrier, poly(α-lipoic acid) polyethylene glycol. The nanomedicine would disintegrate due to the high level of GSH at the tumor sites,achieving the co-delivery of HNK and DMXAA, and realizing the combination therapy through close-range killing by HNK and long-range striking by DMXAA together. In a murine 4T1 breast tumor model, this strategy exhibited high tumor inhibition rate of 93%, and provided a valuable therapeutic choice for cancer therapy.