BACKGROUND Based on the breakthrough of genomics analysis, The Cancer Genome Atlas Research Group recently proposed an integrative genomic analysis, dividing gastric cancer(GC) into four subtypes, characterized by the...BACKGROUND Based on the breakthrough of genomics analysis, The Cancer Genome Atlas Research Group recently proposed an integrative genomic analysis, dividing gastric cancer(GC) into four subtypes, characterized by the chromosomal instability(CIN) status. However, the CIN status of GC is still vaguely characterized and lacking the valuable easy-to-use CIN markers to diagnosis in molecular and histological detection.AIM To explore the associations of CIN with downstream lipidomics profiles.METHODS We collected cancerous and noncancerous tissue samples from 18 patients with GC; the samples were divided into CIN and non-CIN types based on the system of The Cancer Genome Atlas Research Group and 409 sequenced oncogenes and tumor suppressor genes. We identified the lipidomics profiles of the GC samples and samples of their adjacent noncancerous tissues by using liquid chromatography–mass spectrometry. Furthermore, we selected leading metabolites based on variable importance in projection scores of > 1.0 and P <0.05.RESULTS Twelve men and six women participated in this study; the participants had a median age of 67.5 years(range, 52–87 years) and were divided into CIN(n = 9)and non-CIN(n = 9) groups. The GC samples exhibited distinct profiles of lysophosphocholine, phosphocholine, phosphatidylethanolamine,phosphatidylinositol, phosphoserine, sphingomyelin, ceramide, and triglycerides compared with their adjacent noncancerous tissues. The glycerophospholipid levels(phosphocholine, phosphatidylethanolamine, and phosphatidylinositol)were 1.4-to 2.3-times higher in the CIN group compared with the non-CIN group(P < 0.05). Alterations in the glycerolipid and glycerophospholipid pathways indicated progression of GC toward CIN.CONCLUSION The lipidomics profiles of GC samples were distinct from those of their adjacent noncancerous tissues. CIN status of GC is primarily associated with downstream lipidomics in the glycerophospholipid pathway.展开更多
Phospholipids are the major building blocks of the biological membranes. Additionally, phospholipids modulate membrane trafficking and metabolites derived from their
Verbascoside,abundant in olive mill wastewater,is a phenylethanolic glycoside with a wide range of pharmacological activities.Atherosclerosis(AS)is a common metabolic disease and abnormal lipid metabolism in liver is ...Verbascoside,abundant in olive mill wastewater,is a phenylethanolic glycoside with a wide range of pharmacological activities.Atherosclerosis(AS)is a common metabolic disease and abnormal lipid metabolism in liver is inseparable from its formation and development.In this study,the anti-atherosclerotic effect of verbascoside was evaluated by establishing an atherosclerosis model based on western diet feeding of apolipoprotein E-defi cient mice for 16 weeks.After 12 weeks of administration during the feeding period,the levels of total cholesterol(TC),triglyceride(TG),low density lipoprotein cholesterol(LDL-C)in the plasma of mice were signifi cantly decreased,the formation of arterial plaques was delayed,and the levels of alanine aminotransferase(ALT),aspartate aminotransferase(AST)and lactate dehydrogenase(LDH)in plasma were alleviated,showing the hepatoprotective effect.In addition,based on untargeted lipidomic analysis,verbascoside stabilized glycerophospholipid metabolism,modulated lipid metabolism disorders and reduced lipid deposition in the liver to achieve the therapeutic effi cacy against atherosclerosis by regulating cardiolipin(CL),ether-linked phosphatidylcholine(ether-PC),lysophophatidylcholine(LPC),phosphatidylcholine(PC),oxidized phosphatidylcholine(OxPC),oxidized phosphatidylethanolamine(OxPE),triacylglycerol(TG),sphingomyelin(SM)back to normal levels.展开更多
Objective To compare the serum glycerophospholipid levels in the inflammatory subtypes of asthma by using targeted metabolomic analysis. Methods Demographic and clinical data were collected from 51 patients with asthm...Objective To compare the serum glycerophospholipid levels in the inflammatory subtypes of asthma by using targeted metabolomic analysis. Methods Demographic and clinical data were collected from 51 patients with asthma between January 2015 and December 2015. Routine blood and sputum induction tests were performed. Eosinophilic asthma was defined as induced sputum containing ≥ 3% eosinophils, and neutrophilic asthma, as induced sputum containing ≥ 71% neutrophils. Serum metabolic glycerophospholipid profile was determined by liquid chromatography-mass spectrometry. Differences in glycerophospholipid levels between eosinophilic and non-eosinophilic asthma and between neutrophilic and non-neutrophilic asthma were analyzed using partial least squares discriminant analysis. Results The serum lysophosphatidylglycerol level was significantly higher in the group with ≥ 3% eosinophils in sputum than in the group with < 3% eosinophils in sputum. The area under the receiver-operating characteristic curve was ≥ 70%. There was no significant difference in the serum metabolic glycerophospholipid profile between the group with sputum neutrophils ≥ 71% and the group with sputum neutrophils < 71%. Conclusion Serum lysophosphatidylglycerol is produced abundantly in eosinophilic asthma and may be a biomarker of eosinophilic asthma. This information is helpful for identifying and tailoring treatment for the common asthma subtypes.展开更多
Milk is a complex biological fluid containing lipids,proteins,carbohydrates and minerals,which are essential for infant growth.While the lipid portion constitutes only 3%-5%of the total milk composition,it accounts fo...Milk is a complex biological fluid containing lipids,proteins,carbohydrates and minerals,which are essential for infant growth.While the lipid portion constitutes only 3%-5%of the total milk composition,it accounts for over 50%of the infant’s daily energy intake.The dominant portion(approximately 98%)is in the form of triacylglycerols and polar lipids,such as glycerophospholipids and sphingolipids,forming minor components.Recently,with the development of lipidomics,important progresses have been made in milk lipidomics,and the identification and quantification of several milk lipids at the group and molecular species level has become a reality,thereby providing useful information for the infant formula industry.In this review,an overview of the separation of the main components of milk lipids was presented,including glycerolipids,phospholipids and sphingolipids.The analytical methods and strategies for milk lipidomics,including gas chromatography-mass spectrometry(MS),capillary electrophoresis MS,nuclear magnetic resonance,matrix-assisted laser desorption ionization-MS,electrospray ionization-MS,shotgun lipidomics and liquid chromatography-MS,were reviewed.Additionally,the bioinformatics of lipidomics for milk lipid determination,including lipid classification,lipid databases and lipid analysis software,were investigated.This review would aid future investigations of the nutrition of milk lipids and refined researches on formula milk powder.展开更多
OBJECTIVE Forsythiae Fructus(Lianqiao)is a typical heat-clearing and detoxicating traditional Chinese medicine(TCM)herb,which has been traditionally used for treating cancer according to TCM theory.However,the underly...OBJECTIVE Forsythiae Fructus(Lianqiao)is a typical heat-clearing and detoxicating traditional Chinese medicine(TCM)herb,which has been traditionally used for treating cancer according to TCM theory.However,the underlying mechanism has not been fully explained.METHODS In this study,we investigated the antitumor effect of Forsythiae Fructus aqueous extract(FAE)on B16-F10 melanoma.RESULTS FAE strongly inhibited the tumor growth and metastasis formation in B16-F10 melanoma transplanted mice.The survival time of tumor-bearing mice was also significantly prolonged by FAE.The levels of ROS,MDA,TNF-αand IL-6 decreased,while GSH increased in the FAE treatment group,indicating FAE possesses strong anti-oxidative and anti-inflammatory activity.Western blotting analysis demonstrated that antioxidant proteins Nrf2 and HO-1,tumor suppressors P53 and p-PTEN,and the MAPK pathways in tumor tissues were upregulated by FAE treatment.Serum metabolomics analysis further uncovered that 17 metabolites mostly involving in glycerophospholipid metabolism were correlated with the antitumor effect of FAE.Notably,several lysophosphatidylcholines(LysoPCs)significantly decreased in tumor model group,while FAE treatment restored the changes of these phospholipids to about normal condition.LysoPC acyltransferase 1(LPCAT1)and autotaxin(ATX)highly expressed in melanoma and markedly downregulated by FAE were believed to be responsible for this modulation.CONCLUSION FAE exhibites strong antitumor activity against B16-F10 melanoma through activating MAPKs/Nrf2/HO-1 mediated anti-oxidation and anti-inflammation and modulating glycerophospholipid metabolism via downregulating LPCAT1 and ATX.Besides,it is suggested that serum LysoPCs could be potential biomarkers for the diagnosis and prognosis of melanoma.展开更多
Liposomes have been widely exploited as a drug delivery system in treating tumors because of their advantage to enhance anti-tumor efficacy and reduce side effects. In this study, the tumor-targeted 2-dodecyl-6-methox...Liposomes have been widely exploited as a drug delivery system in treating tumors because of their advantage to enhance anti-tumor efficacy and reduce side effects. In this study, the tumor-targeted 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione(DMDD, i.e., Averrhoa carambola extractive) liposomes(HA/TN-DLP) were conducted and assessed. HA/TN-DLP showed controllable drug loading(up to 83%)with high stability. In vitro and in vivo studies showed good cell uptake behavior and high inhibition rate of breast cancer compared to free DMDD. HA/TN-DLP might be the suitable for DMDD due to its better advantages in delivery, penetrability, and targeting-tumor capability. For in vivo mouse model tests,HA/TN-DLP effectively inhibited tumor growth compared to free DMDD. Further analyses indicated that HA/TN-DLP inhibited the glycerophospholipid metabolism pathway by reducing the biosynthesis of phosphatidylcholine and 1-acyl-sn-glycero-3-phosphocholine through regulating the expressions of CEPT1 and LYPLA1, and inhibited tumor cell growth by regulating the PI3K/Akt and NF-κ B signaling pathways. In conclusion, the obviously enhanced antitumor effect further demonstrated that HA/TN-DLP may be a promising tumor-targeting agent.展开更多
As one of the most important crops in the world,rice(Oryza sativa)is a model plant for metabolome research.Although many studies have focused on the analysis of specific tissues,the changes in metab-olite abundance ac...As one of the most important crops in the world,rice(Oryza sativa)is a model plant for metabolome research.Although many studies have focused on the analysis of specific tissues,the changes in metab-olite abundance across the entire life cycle have not yet been determined.In this study,combining both tar-geted and nontargeted metabolite profiling methods,a total of 825 annotated metabolites were quantified in rice samples from different tissues covering the entire life cycle.The contents of metabolites in different tissues of rice were significantly different,with various metabolites accumulating in the plumule and radicle during seed germination.Combining these data with transcriptome data obtained from the same time period,we constructed the Rice Metabolic Regulation Network.The metabolites and co-expressed genes were further divided into 12 clusters according to their accumulation patterns,with members within each cluster displaying a uniform and clear pattern of abundance across development.Using this dataset,we established a comprehensive metabolic profile of the rice life cycle and used two independent strategies to identify novel transcription factors-namely the use of known regulatory genes as bait to screen for new networks underlying lignin metabolism and the unbiased identification of new glycerophospholipid metabolism regulators on the basis of tissue specificity.This study thus demonstrates how guilt-by-association analysis of metabolome and transcriptome data spanning the entire life cycle in cereal crops provides novel resources and tools to aid in understanding the mechanisms underlying important agro-nomic traits.展开更多
The membrane lipids from fast-elongating wild-type cotton (Gossypium hirsutum) fibers at 10 days post- anthesis, wild-type ovules with fiber cells removed, and ovules from the fuzzless-lintless mutant harvested at t...The membrane lipids from fast-elongating wild-type cotton (Gossypium hirsutum) fibers at 10 days post- anthesis, wild-type ovules with fiber cells removed, and ovules from the fuzzless-lintless mutant harvested at the same age, were extracted, separated, and quantified. Fiber cells contained significantly higher amounts of phosphatidylinositol (PI) than both ovule samples with PI 34:3 being the most predominant spe- cies. The genes encoding fatty acid desaturases (415GhFAD), PI synthase (PIS) and PI kinase (PIK) were expressed in a fiber-preferential manner. Further analysis of phosphatidylinositol monophosphate (PIP) indicated that elongating fibers contained four- to five-fold higher amounts of PIP 34:3 than the ovules. Exog- enously applied linolenic acid (C18:3), soybean L-α-PI, and PIPs containing PIP 34:3 promoted significant fiber growth, whereas a liver PI lacking the C18:3 moiety, linoleic acid, and PIP 36:2 were completely ineffec- tive. The growth inhibitory effects of carbenoxolone, 5-hydroxytryptamine, and wortmannin were reverted by C18:3, PI, or PIP, respectively, suggesting that PIP signaling is essential for fiber cell growth. Furthermore, cotton plants expressing virus-induced gene-silencing constructs that specifically suppressed Gh15FAD, GhPIS, or GhPIK expression, resulted in significantly short-fibered phenotypes. Our data provide the basis for in-depth studies on the roles of PI and PIP in mediating cotton fiber growth.展开更多
基金the funding from the Ministry of Science and Technology Taiwan grant,No.MOST 106-2314-B-182A-019-MY3the Chang Gung Foundation,No.CMRPG3E1321-2
文摘BACKGROUND Based on the breakthrough of genomics analysis, The Cancer Genome Atlas Research Group recently proposed an integrative genomic analysis, dividing gastric cancer(GC) into four subtypes, characterized by the chromosomal instability(CIN) status. However, the CIN status of GC is still vaguely characterized and lacking the valuable easy-to-use CIN markers to diagnosis in molecular and histological detection.AIM To explore the associations of CIN with downstream lipidomics profiles.METHODS We collected cancerous and noncancerous tissue samples from 18 patients with GC; the samples were divided into CIN and non-CIN types based on the system of The Cancer Genome Atlas Research Group and 409 sequenced oncogenes and tumor suppressor genes. We identified the lipidomics profiles of the GC samples and samples of their adjacent noncancerous tissues by using liquid chromatography–mass spectrometry. Furthermore, we selected leading metabolites based on variable importance in projection scores of > 1.0 and P <0.05.RESULTS Twelve men and six women participated in this study; the participants had a median age of 67.5 years(range, 52–87 years) and were divided into CIN(n = 9)and non-CIN(n = 9) groups. The GC samples exhibited distinct profiles of lysophosphocholine, phosphocholine, phosphatidylethanolamine,phosphatidylinositol, phosphoserine, sphingomyelin, ceramide, and triglycerides compared with their adjacent noncancerous tissues. The glycerophospholipid levels(phosphocholine, phosphatidylethanolamine, and phosphatidylinositol)were 1.4-to 2.3-times higher in the CIN group compared with the non-CIN group(P < 0.05). Alterations in the glycerolipid and glycerophospholipid pathways indicated progression of GC toward CIN.CONCLUSION The lipidomics profiles of GC samples were distinct from those of their adjacent noncancerous tissues. CIN status of GC is primarily associated with downstream lipidomics in the glycerophospholipid pathway.
文摘Phospholipids are the major building blocks of the biological membranes. Additionally, phospholipids modulate membrane trafficking and metabolites derived from their
基金supported by the Tianjin Science and Technology Project(21ZYJDJC00080)and(20ZYJDJC00120)the Natural Science Foundation of Tianjin(18JCZDJC97700)the Natural Science Foundation of China(81573547).
文摘Verbascoside,abundant in olive mill wastewater,is a phenylethanolic glycoside with a wide range of pharmacological activities.Atherosclerosis(AS)is a common metabolic disease and abnormal lipid metabolism in liver is inseparable from its formation and development.In this study,the anti-atherosclerotic effect of verbascoside was evaluated by establishing an atherosclerosis model based on western diet feeding of apolipoprotein E-defi cient mice for 16 weeks.After 12 weeks of administration during the feeding period,the levels of total cholesterol(TC),triglyceride(TG),low density lipoprotein cholesterol(LDL-C)in the plasma of mice were signifi cantly decreased,the formation of arterial plaques was delayed,and the levels of alanine aminotransferase(ALT),aspartate aminotransferase(AST)and lactate dehydrogenase(LDH)in plasma were alleviated,showing the hepatoprotective effect.In addition,based on untargeted lipidomic analysis,verbascoside stabilized glycerophospholipid metabolism,modulated lipid metabolism disorders and reduced lipid deposition in the liver to achieve the therapeutic effi cacy against atherosclerosis by regulating cardiolipin(CL),ether-linked phosphatidylcholine(ether-PC),lysophophatidylcholine(LPC),phosphatidylcholine(PC),oxidized phosphatidylcholine(OxPC),oxidized phosphatidylethanolamine(OxPE),triacylglycerol(TG),sphingomyelin(SM)back to normal levels.
基金funded by the National Natural Science Foundation of China Youth Fund Project [No.81400017]the National Natural Science Foundation of China Emergency Management Project [No.81641153]the Returned Overseas Chinese Scholars Startup Fund [No.Y81484-02]
文摘Objective To compare the serum glycerophospholipid levels in the inflammatory subtypes of asthma by using targeted metabolomic analysis. Methods Demographic and clinical data were collected from 51 patients with asthma between January 2015 and December 2015. Routine blood and sputum induction tests were performed. Eosinophilic asthma was defined as induced sputum containing ≥ 3% eosinophils, and neutrophilic asthma, as induced sputum containing ≥ 71% neutrophils. Serum metabolic glycerophospholipid profile was determined by liquid chromatography-mass spectrometry. Differences in glycerophospholipid levels between eosinophilic and non-eosinophilic asthma and between neutrophilic and non-neutrophilic asthma were analyzed using partial least squares discriminant analysis. Results The serum lysophosphatidylglycerol level was significantly higher in the group with ≥ 3% eosinophils in sputum than in the group with < 3% eosinophils in sputum. The area under the receiver-operating characteristic curve was ≥ 70%. There was no significant difference in the serum metabolic glycerophospholipid profile between the group with sputum neutrophils ≥ 71% and the group with sputum neutrophils < 71%. Conclusion Serum lysophosphatidylglycerol is produced abundantly in eosinophilic asthma and may be a biomarker of eosinophilic asthma. This information is helpful for identifying and tailoring treatment for the common asthma subtypes.
基金Supported by"the 13th Five-Year"National Science and Technology Plan Project of China(2018YFC1603703,2018YFC1604302)the National Natural Science Foundation of China(2013BAD18B03)+3 种基金China Scholarship Council(202008210391)Shenyang Technological Innovation Project(Y17-0-028)Liaoning Revitalization Talents Project(XLYC1902083)Postgraduate Innovation and Cultivation Project of Shenyang Agricultural University(2021YCXB04)。
文摘Milk is a complex biological fluid containing lipids,proteins,carbohydrates and minerals,which are essential for infant growth.While the lipid portion constitutes only 3%-5%of the total milk composition,it accounts for over 50%of the infant’s daily energy intake.The dominant portion(approximately 98%)is in the form of triacylglycerols and polar lipids,such as glycerophospholipids and sphingolipids,forming minor components.Recently,with the development of lipidomics,important progresses have been made in milk lipidomics,and the identification and quantification of several milk lipids at the group and molecular species level has become a reality,thereby providing useful information for the infant formula industry.In this review,an overview of the separation of the main components of milk lipids was presented,including glycerolipids,phospholipids and sphingolipids.The analytical methods and strategies for milk lipidomics,including gas chromatography-mass spectrometry(MS),capillary electrophoresis MS,nuclear magnetic resonance,matrix-assisted laser desorption ionization-MS,electrospray ionization-MS,shotgun lipidomics and liquid chromatography-MS,were reviewed.Additionally,the bioinformatics of lipidomics for milk lipid determination,including lipid classification,lipid databases and lipid analysis software,were investigated.This review would aid future investigations of the nutrition of milk lipids and refined researches on formula milk powder.
文摘OBJECTIVE Forsythiae Fructus(Lianqiao)is a typical heat-clearing and detoxicating traditional Chinese medicine(TCM)herb,which has been traditionally used for treating cancer according to TCM theory.However,the underlying mechanism has not been fully explained.METHODS In this study,we investigated the antitumor effect of Forsythiae Fructus aqueous extract(FAE)on B16-F10 melanoma.RESULTS FAE strongly inhibited the tumor growth and metastasis formation in B16-F10 melanoma transplanted mice.The survival time of tumor-bearing mice was also significantly prolonged by FAE.The levels of ROS,MDA,TNF-αand IL-6 decreased,while GSH increased in the FAE treatment group,indicating FAE possesses strong anti-oxidative and anti-inflammatory activity.Western blotting analysis demonstrated that antioxidant proteins Nrf2 and HO-1,tumor suppressors P53 and p-PTEN,and the MAPK pathways in tumor tissues were upregulated by FAE treatment.Serum metabolomics analysis further uncovered that 17 metabolites mostly involving in glycerophospholipid metabolism were correlated with the antitumor effect of FAE.Notably,several lysophosphatidylcholines(LysoPCs)significantly decreased in tumor model group,while FAE treatment restored the changes of these phospholipids to about normal condition.LysoPC acyltransferase 1(LPCAT1)and autotaxin(ATX)highly expressed in melanoma and markedly downregulated by FAE were believed to be responsible for this modulation.CONCLUSION FAE exhibites strong antitumor activity against B16-F10 melanoma through activating MAPKs/Nrf2/HO-1 mediated anti-oxidation and anti-inflammation and modulating glycerophospholipid metabolism via downregulating LPCAT1 and ATX.Besides,it is suggested that serum LysoPCs could be potential biomarkers for the diagnosis and prognosis of melanoma.
基金funded by the Guangxi Key Laboratory of Biotargeting Theranostics(No.GXSWBX201804)the State Project for Essential Drug Research and Development(No.2019ZX09301132)+4 种基金Guangxi Science and Technology Bases and Talent Special Project(No.AD17129062)Guangxi Key Research and Development Project(No.AB20117001)Guangxi First-class Discipline Project for Pharmaceutical Sciences(No.GXFCDP-PS-2018)Natural Science Foundation of China(Nos.81760665,81460205)Guangxi Science and Technology Base and Talent Project(No.AD17195085)。
文摘Liposomes have been widely exploited as a drug delivery system in treating tumors because of their advantage to enhance anti-tumor efficacy and reduce side effects. In this study, the tumor-targeted 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione(DMDD, i.e., Averrhoa carambola extractive) liposomes(HA/TN-DLP) were conducted and assessed. HA/TN-DLP showed controllable drug loading(up to 83%)with high stability. In vitro and in vivo studies showed good cell uptake behavior and high inhibition rate of breast cancer compared to free DMDD. HA/TN-DLP might be the suitable for DMDD due to its better advantages in delivery, penetrability, and targeting-tumor capability. For in vivo mouse model tests,HA/TN-DLP effectively inhibited tumor growth compared to free DMDD. Further analyses indicated that HA/TN-DLP inhibited the glycerophospholipid metabolism pathway by reducing the biosynthesis of phosphatidylcholine and 1-acyl-sn-glycero-3-phosphocholine through regulating the expressions of CEPT1 and LYPLA1, and inhibited tumor cell growth by regulating the PI3K/Akt and NF-κ B signaling pathways. In conclusion, the obviously enhanced antitumor effect further demonstrated that HA/TN-DLP may be a promising tumor-targeting agent.
基金supported by the Hainan Province Major Research Project(modern agricuture,ZDYF2020066)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China 01821005)+1 种基金the Hainan Major Science and Technolgy Project(No,ZDKJ202002).the Hainan Academician Innovaton Platform(HD-YSZX-202003)and the Hainan University Startup Fund(KYQD(ZR)1866).
文摘As one of the most important crops in the world,rice(Oryza sativa)is a model plant for metabolome research.Although many studies have focused on the analysis of specific tissues,the changes in metab-olite abundance across the entire life cycle have not yet been determined.In this study,combining both tar-geted and nontargeted metabolite profiling methods,a total of 825 annotated metabolites were quantified in rice samples from different tissues covering the entire life cycle.The contents of metabolites in different tissues of rice were significantly different,with various metabolites accumulating in the plumule and radicle during seed germination.Combining these data with transcriptome data obtained from the same time period,we constructed the Rice Metabolic Regulation Network.The metabolites and co-expressed genes were further divided into 12 clusters according to their accumulation patterns,with members within each cluster displaying a uniform and clear pattern of abundance across development.Using this dataset,we established a comprehensive metabolic profile of the rice life cycle and used two independent strategies to identify novel transcription factors-namely the use of known regulatory genes as bait to screen for new networks underlying lignin metabolism and the unbiased identification of new glycerophospholipid metabolism regulators on the basis of tissue specificity.This study thus demonstrates how guilt-by-association analysis of metabolome and transcriptome data spanning the entire life cycle in cereal crops provides novel resources and tools to aid in understanding the mechanisms underlying important agro-nomic traits.
文摘The membrane lipids from fast-elongating wild-type cotton (Gossypium hirsutum) fibers at 10 days post- anthesis, wild-type ovules with fiber cells removed, and ovules from the fuzzless-lintless mutant harvested at the same age, were extracted, separated, and quantified. Fiber cells contained significantly higher amounts of phosphatidylinositol (PI) than both ovule samples with PI 34:3 being the most predominant spe- cies. The genes encoding fatty acid desaturases (415GhFAD), PI synthase (PIS) and PI kinase (PIK) were expressed in a fiber-preferential manner. Further analysis of phosphatidylinositol monophosphate (PIP) indicated that elongating fibers contained four- to five-fold higher amounts of PIP 34:3 than the ovules. Exog- enously applied linolenic acid (C18:3), soybean L-α-PI, and PIPs containing PIP 34:3 promoted significant fiber growth, whereas a liver PI lacking the C18:3 moiety, linoleic acid, and PIP 36:2 were completely ineffec- tive. The growth inhibitory effects of carbenoxolone, 5-hydroxytryptamine, and wortmannin were reverted by C18:3, PI, or PIP, respectively, suggesting that PIP signaling is essential for fiber cell growth. Furthermore, cotton plants expressing virus-induced gene-silencing constructs that specifically suppressed Gh15FAD, GhPIS, or GhPIK expression, resulted in significantly short-fibered phenotypes. Our data provide the basis for in-depth studies on the roles of PI and PIP in mediating cotton fiber growth.