An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
In regard to goaf risk prediction,due to the low accuracy and single prediction method,this study proposes a method that combines the improved arithmetic optimization algorithm(IAOA)–support vector machines(SVM)with ...In regard to goaf risk prediction,due to the low accuracy and single prediction method,this study proposes a method that combines the improved arithmetic optimization algorithm(IAOA)–support vector machines(SVM)with GoCAD–FLAC^(3D)numerical simulation.Thus,goaf risk is comprehensively predicted.From the perspectives of geological and engineering conditions,eight factors that affect goaf stability and 176 sets of sample data were determined.We utilized eight influencing factors such as rock mass structure,geological structure,and goaf burial depth as inputs,and the goaf risk level as the output.Moreover,an IAOA–SVM goaf risk prediction model was established.The 30 goaf areas of Yangla Copper Mine in Yunnan Province were selected as the research subject.First,the rationality of mechanical parameter values in the numerical model was verified using the parameter inversion method.Second,based on the GoCAD–FLAC^(3D)numerical simulation method,the goaf risk analysis in Yangla Copper Mine was performed.Subsequently,using numerical simulation verification,the goaf filling effect was analyzed.Finally,the prediction results of the IAOA–SVM model were compared with that of other intelligent algorithms.The results indicate that the numerical simulation results of the GoCAD–FLAC^(3D)model are consistent with those of IAOA–SVM and the actual results,which further verifies the effectiveness and superiority of the IAOA–SVM prediction model.Therefore,an innovative approach for goaf risk prediction is developed.展开更多
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
基金funded by the National Science Foundation of China(Grant No.51934003)the Major Science and Technology Special Project of Yunnan Province,China(Grant No.202202AG050014).
文摘In regard to goaf risk prediction,due to the low accuracy and single prediction method,this study proposes a method that combines the improved arithmetic optimization algorithm(IAOA)–support vector machines(SVM)with GoCAD–FLAC^(3D)numerical simulation.Thus,goaf risk is comprehensively predicted.From the perspectives of geological and engineering conditions,eight factors that affect goaf stability and 176 sets of sample data were determined.We utilized eight influencing factors such as rock mass structure,geological structure,and goaf burial depth as inputs,and the goaf risk level as the output.Moreover,an IAOA–SVM goaf risk prediction model was established.The 30 goaf areas of Yangla Copper Mine in Yunnan Province were selected as the research subject.First,the rationality of mechanical parameter values in the numerical model was verified using the parameter inversion method.Second,based on the GoCAD–FLAC^(3D)numerical simulation method,the goaf risk analysis in Yangla Copper Mine was performed.Subsequently,using numerical simulation verification,the goaf filling effect was analyzed.Finally,the prediction results of the IAOA–SVM model were compared with that of other intelligent algorithms.The results indicate that the numerical simulation results of the GoCAD–FLAC^(3D)model are consistent with those of IAOA–SVM and the actual results,which further verifies the effectiveness and superiority of the IAOA–SVM prediction model.Therefore,an innovative approach for goaf risk prediction is developed.