At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive...At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive evaluation the advanced operation research techniques can be used in continuous production systems in developing countries very widely, because of initial inadequate plant layout, stage by stage development of production lines, the purchase of second hand machineries from various countries, plurality of customers. A case of production system planning is proposed for a chemical company in which the above mentioned conditions are almost presented. The goals and constraints in this issue are as follows: (1) Minimizing deviation of customer's requirements. (2) Maximizing the profit. (3) Minimizing the frequencies of changes in formula production. (4) Minimizing the inventory of final products. (5) Balancing the production sections with regard to rate in production. (6) Limitation in inventory of raw material. The present situation is in such a way that various techniques such as goal programming, linear programming and dynamic programming can be used. But dynamic production programming issues are divided into two categories, at first one with limitation in production capacity and another with unlimited production capacity. For the first category, a systematic and acceptable solution has not been presented yet. Therefore an innovative method is used to convert the dynamic situation to a zero- one model. At last this issue is changed to a goal programming model with non-linear limitations with the use of GRG algorithm and that's how it is solved.展开更多
To solve the problem of investment portfolio with single goal of maximal NPV, a 0- 1 programming model was proposed and proved effective; and to solve that concerning more elements of a project such as risk level and ...To solve the problem of investment portfolio with single goal of maximal NPV, a 0- 1 programming model was proposed and proved effective; and to solve that concerning more elements of a project such as risk level and social benefit, a goal programming model is then introduced. The latter is a linear programming model adopting slack variable called deviation variable to turn inequation constraint into equation constraint, introducing a priority factor to denote different importance of the goals. A case study has demonstrated that this goal programming model can give different results according to different priority requirement of each objective.展开更多
A 0-1 integer programming model for weekly fleet assignment was put forward based on linear network and weekly flight scheduling in China. In this model, the objective function is to maximize the total profit of fleet...A 0-1 integer programming model for weekly fleet assignment was put forward based on linear network and weekly flight scheduling in China. In this model, the objective function is to maximize the total profit of fleet assignment, subject to the constraints of coverage, aircraft flow balance, fleet size, aircraft availability, aircraft usage, flight restriction, aircraft seat capacity, and stopover. Then the branch-and-bound algorithm based on special ordered set was applied to solve the model. At last, a real- wofld case study on an airline with 5 fleets, 48 aircrafts and 1 786 flight legs indicated that the profit increase was ¥ 1 591276 one week and the running time was no more than 4 rain, which shows that the model and algorithm are fairly good for domestic airline.展开更多
In the last several years, there has been a marked improvement in the development of new algorithms for solving Linear Goal programming (LGP). This paper presents a survey of current methods for LGP.
A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid el...A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid electric vehicle is proposed.The solving process and the use of reference trajectory are discussed for the application of MPC based on dynamic programming algorithm.The simulation of hybrid electric vehicle is carried out under a specific working condition.The simulation results show that the control strategy can effectively reduce fuel consumption when the torque of engine and motor is reasonably distributed,and the effectiveness of the control strategy is verified.展开更多
A Linear Programming DASH diet model for persons with hypertension has previously been formulated and daily minimum cost diet plans that satisfy the DASH diets’ tolerable intake level of the nutrients for 1500 mg a d...A Linear Programming DASH diet model for persons with hypertension has previously been formulated and daily minimum cost diet plans that satisfy the DASH diets’ tolerable intake level of the nutrients for 1500 mg a day Sodium level and different daily calorie levels were obtained using sample foods from the DASH diet eating plan chart. But the limitation in the use of linear programming model in selecting diet plans to meet specific nutritional requirements which normally results in the oversupply of certain nutrients was evident in the linear programming DASH diet plan obtained as the nutrient level of the diet plans obtained had wide deviations of from the DASH diets’ tolerable upper and lower intake level for the given calorie and sodium levels. Hence the need for a model that gives diet plans with minimized nutrients’ level deviations from the DASH diets’ tolerable intake level for different daily calorie and sodium level at desired cost. A weighted Goal Programming DASH diet model that minimizes the daily cost of the DASH eating plan as well as deviations of the diets’ nutrients content from the DASH diet’s tolerable intake levels is hereby presented in this work. The formulated weighted goal programming DASH diet model is further illustrated using chosen sample foods from the DASH food chart as used in the work on the linear programming DASH diet model for a 1500 mg sodium level and 2000 calories a day diet plan as well as for 1800, 2200, 2400, 2600, 2800 and 3000 daily calorie levels. A comparison of the DASH nutrients’ composition of the weighted Goal Programming DASH diet plans and those of the linear programming DASH diet plans were carried out at this sodium level and the different daily calorie levels. It was evident from the results of the comparison that the weighted goal programming DASH diet plans has minimized deviations from the DASH diet’s tolerable intake levels than those of the linear programming DASH diet plans.展开更多
An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established ...An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.展开更多
The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the dat...The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.展开更多
Input-output data fitting methods are often used for unknown-structure nonlinear system modeling. Based on model-on-demand tactics, a multiple model approach to modeling for nonlinear systems is presented. The basic i...Input-output data fitting methods are often used for unknown-structure nonlinear system modeling. Based on model-on-demand tactics, a multiple model approach to modeling for nonlinear systems is presented. The basic idea is to find out, from vast historical system input-output data sets, some data sets matching with the current working point, then to develop a local model using Local Polynomial Fitting (LPF) algorithm. With the change of working points, multiple local models are built, which realize the exact modeling for the global system. By comparing to other methods, the simulation results show good performance for its simple, effective and reliable estimation.展开更多
In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries a...In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assum...A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assumed that the processing times and the due dates are nonnegative fuzzy numbers and all the weights are positive, crisp numbers. Based on credibility measure, three parallel machine scheduling problems and a goal-programming model are formulated. Feasible schedules are evaluated not only by their objective values but also by the credibility degree of satisfaction with their precedence constraints. The genetic algorithm is utilized to find the best solutions in a short period of time. An illustrative numerical example is also given. Simulation results show that the proposed models are effective, which can deal with the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure.展开更多
The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dyn...The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dynamic of the poverty in Burundi. The Burundian economy shows an inflation rate of -1.5% in 2018 for the Gross Domestic Product growth real rate of 2.8% in 2016. In this research, the aim is to find a model that contributes to solving the problem of poverty in Burundi. The results of this research fill the knowledge gap in the modeling and optimization of the Burundian economic system. The aim of this model is to solve an optimization problem combining the variables of production, consumption, budget, human resources and available raw materials. Scientific modeling and optimal solving of the poverty problem show the tools for measuring poverty rate and determining various countries’ poverty levels when considering advanced knowledge. In addition, investigating the aspects of poverty will properly orient development aid to developing countries and thus, achieve their objectives of growth and the fight against poverty. This paper provides a new and innovative framework for global scientific research regarding the multiple facets of this problem. An estimate of the poverty rate allows good progress with the theory and optimization methods in measuring the poverty rate and achieving sustainable development goals. By comparing the annual food production and the required annual consumption, there is an imbalance between different types of food. Proteins, minerals and vitamins produced in Burundi are sufficient when considering their consumption as required by the entire Burundian population. This positive contribution for the latter comes from the fact that some cows, goats, fishes, ···, slaughtered in Burundi come from neighboring countries. Real production remains in deficit. The lipids, acids, calcium, fibers and carbohydrates produced in Burundi are insufficient for consumption. This negative contribution proves a Burundian food deficit. It is a decision-making indicator for the design and updating of agricultural policy and implementation programs as well as projects. Investment and economic growth are only possible when food security is mastered. The capital allocated to food investment must be revised upwards. Demographic control is also a relevant indicator to push forward Burundi among the emerging countries in 2040. Meanwhile, better understanding of the determinants of poverty by taking cultural and organizational aspects into account guides managers for poverty reduction projects and programs.展开更多
In this study,the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks(ANNs)along with the hybridization procedures of global an...In this study,the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks(ANNs)along with the hybridization procedures of global and local search approaches.The global search genetic algorithm(GA)and local search sequential quadratic programming scheme(SQPS)are implemented to solve the nonlinear Liénard model.An objective function using the differential model and boundary conditions is designed and optimized by the hybrid computing strength of the GA-SQPS.The motivation of the ANN procedures along with GA-SQPS comes to present reliable,feasible and precise frameworks to tackle stiff and highly nonlinear differentialmodels.The designed procedures of ANNs along with GA-SQPS are applied for three highly nonlinear differential models.The achieved numerical outcomes on multiple trials using the designed procedures are compared to authenticate the correctness,viability and efficacy.Moreover,statistical performances based on different measures are also provided to check the reliability of the ANN along with GASQPS.展开更多
A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result...A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result in more serious congestion.On the other hand,a low-frequency bus service would increase the waiting time for passengers and would not reduce the use of private cars.It is important to strike a balance between high and low frequencies in order to minimize the total delays for all road users.It is critical to formulate the impacts of bus frequency on congestion dynamics and mode choices.However,as far as the authors know,most proposed bus frequency optimization formulations are based on static demand and the Bureau of Public Roads function,and do not properly consider the congestion dynamics and their impacts on mode choices.To fill this gap,this paper proposes a bi-level optimization model.A three-dimensional Macroscopic Fundamental Diagram based modeling approach is developed to capture the bi-modal congestion dynamics.A variational inequality model for the user equilibrium in mode choices is presented and solved using a double projection algorithm.A surrogate model-based algorithm is used to solve the bi-level programming problem.展开更多
文摘At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive evaluation the advanced operation research techniques can be used in continuous production systems in developing countries very widely, because of initial inadequate plant layout, stage by stage development of production lines, the purchase of second hand machineries from various countries, plurality of customers. A case of production system planning is proposed for a chemical company in which the above mentioned conditions are almost presented. The goals and constraints in this issue are as follows: (1) Minimizing deviation of customer's requirements. (2) Maximizing the profit. (3) Minimizing the frequencies of changes in formula production. (4) Minimizing the inventory of final products. (5) Balancing the production sections with regard to rate in production. (6) Limitation in inventory of raw material. The present situation is in such a way that various techniques such as goal programming, linear programming and dynamic programming can be used. But dynamic production programming issues are divided into two categories, at first one with limitation in production capacity and another with unlimited production capacity. For the first category, a systematic and acceptable solution has not been presented yet. Therefore an innovative method is used to convert the dynamic situation to a zero- one model. At last this issue is changed to a goal programming model with non-linear limitations with the use of GRG algorithm and that's how it is solved.
基金Funded by the Foundation of Science Committee of Chongqing (No.2000- 6071)
文摘To solve the problem of investment portfolio with single goal of maximal NPV, a 0- 1 programming model was proposed and proved effective; and to solve that concerning more elements of a project such as risk level and social benefit, a goal programming model is then introduced. The latter is a linear programming model adopting slack variable called deviation variable to turn inequation constraint into equation constraint, introducing a priority factor to denote different importance of the goals. A case study has demonstrated that this goal programming model can give different results according to different priority requirement of each objective.
基金The National Natural Science Foundationof China (70473037)
文摘A 0-1 integer programming model for weekly fleet assignment was put forward based on linear network and weekly flight scheduling in China. In this model, the objective function is to maximize the total profit of fleet assignment, subject to the constraints of coverage, aircraft flow balance, fleet size, aircraft availability, aircraft usage, flight restriction, aircraft seat capacity, and stopover. Then the branch-and-bound algorithm based on special ordered set was applied to solve the model. At last, a real- wofld case study on an airline with 5 fleets, 48 aircrafts and 1 786 flight legs indicated that the profit increase was ¥ 1 591276 one week and the running time was no more than 4 rain, which shows that the model and algorithm are fairly good for domestic airline.
文摘In the last several years, there has been a marked improvement in the development of new algorithms for solving Linear Goal programming (LGP). This paper presents a survey of current methods for LGP.
基金This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No.2016ggjs-287the project of science and technology of Henan province under Grant Nos.172102210124,202102210269the Key Scientific Research projects in Colleges and Universities in Henan(Grant No.18B460003).
文摘A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid electric vehicle is proposed.The solving process and the use of reference trajectory are discussed for the application of MPC based on dynamic programming algorithm.The simulation of hybrid electric vehicle is carried out under a specific working condition.The simulation results show that the control strategy can effectively reduce fuel consumption when the torque of engine and motor is reasonably distributed,and the effectiveness of the control strategy is verified.
文摘A Linear Programming DASH diet model for persons with hypertension has previously been formulated and daily minimum cost diet plans that satisfy the DASH diets’ tolerable intake level of the nutrients for 1500 mg a day Sodium level and different daily calorie levels were obtained using sample foods from the DASH diet eating plan chart. But the limitation in the use of linear programming model in selecting diet plans to meet specific nutritional requirements which normally results in the oversupply of certain nutrients was evident in the linear programming DASH diet plan obtained as the nutrient level of the diet plans obtained had wide deviations of from the DASH diets’ tolerable upper and lower intake level for the given calorie and sodium levels. Hence the need for a model that gives diet plans with minimized nutrients’ level deviations from the DASH diets’ tolerable intake level for different daily calorie and sodium level at desired cost. A weighted Goal Programming DASH diet model that minimizes the daily cost of the DASH eating plan as well as deviations of the diets’ nutrients content from the DASH diet’s tolerable intake levels is hereby presented in this work. The formulated weighted goal programming DASH diet model is further illustrated using chosen sample foods from the DASH food chart as used in the work on the linear programming DASH diet model for a 1500 mg sodium level and 2000 calories a day diet plan as well as for 1800, 2200, 2400, 2600, 2800 and 3000 daily calorie levels. A comparison of the DASH nutrients’ composition of the weighted Goal Programming DASH diet plans and those of the linear programming DASH diet plans were carried out at this sodium level and the different daily calorie levels. It was evident from the results of the comparison that the weighted goal programming DASH diet plans has minimized deviations from the DASH diet’s tolerable intake levels than those of the linear programming DASH diet plans.
文摘An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.
基金This research is sponsored by the National Natural Science Foundation of China (No. 40374024).
文摘The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.
基金This project was supported by National Natural Science Foundation (No. 69934020).
文摘Input-output data fitting methods are often used for unknown-structure nonlinear system modeling. Based on model-on-demand tactics, a multiple model approach to modeling for nonlinear systems is presented. The basic idea is to find out, from vast historical system input-output data sets, some data sets matching with the current working point, then to develop a local model using Local Polynomial Fitting (LPF) algorithm. With the change of working points, multiple local models are built, which realize the exact modeling for the global system. By comparing to other methods, the simulation results show good performance for its simple, effective and reliable estimation.
文摘In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
基金Sponsored by the Basic Research Foundation of Beijing Institute of Technology (BIT-UBF-200508G4212)
文摘A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assumed that the processing times and the due dates are nonnegative fuzzy numbers and all the weights are positive, crisp numbers. Based on credibility measure, three parallel machine scheduling problems and a goal-programming model are formulated. Feasible schedules are evaluated not only by their objective values but also by the credibility degree of satisfaction with their precedence constraints. The genetic algorithm is utilized to find the best solutions in a short period of time. An illustrative numerical example is also given. Simulation results show that the proposed models are effective, which can deal with the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure.
文摘The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dynamic of the poverty in Burundi. The Burundian economy shows an inflation rate of -1.5% in 2018 for the Gross Domestic Product growth real rate of 2.8% in 2016. In this research, the aim is to find a model that contributes to solving the problem of poverty in Burundi. The results of this research fill the knowledge gap in the modeling and optimization of the Burundian economic system. The aim of this model is to solve an optimization problem combining the variables of production, consumption, budget, human resources and available raw materials. Scientific modeling and optimal solving of the poverty problem show the tools for measuring poverty rate and determining various countries’ poverty levels when considering advanced knowledge. In addition, investigating the aspects of poverty will properly orient development aid to developing countries and thus, achieve their objectives of growth and the fight against poverty. This paper provides a new and innovative framework for global scientific research regarding the multiple facets of this problem. An estimate of the poverty rate allows good progress with the theory and optimization methods in measuring the poverty rate and achieving sustainable development goals. By comparing the annual food production and the required annual consumption, there is an imbalance between different types of food. Proteins, minerals and vitamins produced in Burundi are sufficient when considering their consumption as required by the entire Burundian population. This positive contribution for the latter comes from the fact that some cows, goats, fishes, ···, slaughtered in Burundi come from neighboring countries. Real production remains in deficit. The lipids, acids, calcium, fibers and carbohydrates produced in Burundi are insufficient for consumption. This negative contribution proves a Burundian food deficit. It is a decision-making indicator for the design and updating of agricultural policy and implementation programs as well as projects. Investment and economic growth are only possible when food security is mastered. The capital allocated to food investment must be revised upwards. Demographic control is also a relevant indicator to push forward Burundi among the emerging countries in 2040. Meanwhile, better understanding of the determinants of poverty by taking cultural and organizational aspects into account guides managers for poverty reduction projects and programs.
文摘In this study,the design of a computational heuristic based on the nonlinear Liénard model is presented using the efficiency of artificial neural networks(ANNs)along with the hybridization procedures of global and local search approaches.The global search genetic algorithm(GA)and local search sequential quadratic programming scheme(SQPS)are implemented to solve the nonlinear Liénard model.An objective function using the differential model and boundary conditions is designed and optimized by the hybrid computing strength of the GA-SQPS.The motivation of the ANN procedures along with GA-SQPS comes to present reliable,feasible and precise frameworks to tackle stiff and highly nonlinear differentialmodels.The designed procedures of ANNs along with GA-SQPS are applied for three highly nonlinear differential models.The achieved numerical outcomes on multiple trials using the designed procedures are compared to authenticate the correctness,viability and efficacy.Moreover,statistical performances based on different measures are also provided to check the reliability of the ANN along with GASQPS.
基金supported by the National Natural Science Foundation of China(Grant No.72201088,71871077,71925001)the Fundamental Research Funds for the Central Universities of China(Grant No.PA2022GDSK0040,JZ2023YQTD0073),which are gratefully acknowledged.
文摘A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result in more serious congestion.On the other hand,a low-frequency bus service would increase the waiting time for passengers and would not reduce the use of private cars.It is important to strike a balance between high and low frequencies in order to minimize the total delays for all road users.It is critical to formulate the impacts of bus frequency on congestion dynamics and mode choices.However,as far as the authors know,most proposed bus frequency optimization formulations are based on static demand and the Bureau of Public Roads function,and do not properly consider the congestion dynamics and their impacts on mode choices.To fill this gap,this paper proposes a bi-level optimization model.A three-dimensional Macroscopic Fundamental Diagram based modeling approach is developed to capture the bi-modal congestion dynamics.A variational inequality model for the user equilibrium in mode choices is presented and solved using a double projection algorithm.A surrogate model-based algorithm is used to solve the bi-level programming problem.