Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the charact...Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the characteristics of drought events.Studying precipitation,reference evapotranspiration(ET_(0)),and vegetation yield can derive information to help conserve water resources in grassland ecosystems in arid and semi-arid regions.In this study,the interactions of precipitation,ET_(0),and vegetation yield in Darhan Muminggan Joint Banner(DMJB),a desert steppe in Inner Mongolia Autonomous Region,China were explored using two-dimensional(2D)and three-dimensional(3D)joint distribution models.Three types of Copula functions were applied to quantitatively analyze the joint distribution probability of different combinations of precipitation,ET_(0),and vegetation yield.For the precipitation–ET_(0)dry–wet type,the 2D joint distribution probability with precipitation≤245.69 mm/a or ET_(0)≥959.20 mm/a in DMJB was approximately 0.60,while the joint distribution probability with precipitation≤245.69 mm/a and ET_(0)≥959.20 mm/a was approximately 0.20.Correspondingly,the joint return period that at least one of the two events(precipitation was dry or ET_(0)was wet)occurred was 2 a,and the co-occurrence return period that both events(precipitation was dry and ET_(0)was wet)occurred was 5 a.Under this condition,the interval between dry and wet events would be short,the water supply and demand were unbalanced,and the water demand of vegetation would not be met.In addition,when precipitation remained stable and ET_(0)increased,the 3D joint distribution probability that vegetation yield would decrease due to water shortage in the precipitation–ET_(0)dry–wet years could reach up to 0.60–0.70.In future work,irrigation activities and water allocation criteria need to be implemented to increase vegetation yield and the safety of water resources in the desert steppe of Inner Mongolia.展开更多
Cistanche deserticola is an important medicinal plant in Mongolia.Despite its significant role in local healing systems,little traditional knowledge had been reported.The present study investigated folk names of C.des...Cistanche deserticola is an important medicinal plant in Mongolia.Despite its significant role in local healing systems,little traditional knowledge had been reported.The present study investigated folk names of C.deserticola and other species of the same community in Umnugobi Province,South Gobi region of Mongolia,based on ethnobotanical approaches.The high correspondence between folk names and scientific names of plant species occurring in Cistanche-associated community shows the scientific meaning of folk nomenclature and classification in Mongolia.The Mongolian and folk names of plants were formed on the basis of observations and understanding of wild plants including their morphology,phenology and traditional uses as well.Results from this study will support the conservation of C.deserticola itself,a rare and endangered plant species listed in the Monglian Red Data Book.Our documentation of folk nomenclature based on 96 plant species in the Cistanche community,as a part of traditional knowledge associated with biodiversity,will be very helpful for making strategy of plant biodiversity conservation in Mongolia.展开更多
Non-erodible elements such as stones and vegetation are key to controlling wind erosion and dust emission in drylands.Stony deserts are widely distributed in the Gobi Desert,but the effect of stones on wind erosion an...Non-erodible elements such as stones and vegetation are key to controlling wind erosion and dust emission in drylands.Stony deserts are widely distributed in the Gobi Desert,but the effect of stones on wind erosion and dust emission have not been well studied,except under artificial conditions.In this study,we evaluated the effect of stones on wind erosion and dust emission by measuring the sand saltation threshold in a stony desert in Tsogt-Ovoo in the Gobi Desert,Mongolia,under natural surface conditions during sand and dust storms.We quantified the amount of stones by measuring the roughness density,and determined the threshold friction velocity for sand saltation by measuring wind speed and sand saltation count.Our results showed that the threshold friction velocity increased with the roughness density of stones.In the northern part of the study area,where neither a surface crust nor vegetation was observed,the roughness density of stones was 0.000 in a topographic depression(TD),0.050 on a northern slope(N.SL),and 0.160 on the northern mountain(N.MT).The mean threshold friction velocity values were 0.23,0.41,and 0.57 m/s at the TD,N.SL,and N.MT sites,respectively.In the southern part of the study area,the roughness density values of stones were 0.000 and 0.070-0.320 at the TD and southern slope sites,respectively,and the mean threshold friction velocities were 0.23 and 0.45-0.71 m/s,respectively.We further compared the observed threshold friction velocities with simulated threshold friction velocities using Raupach's theoretical roughness correction and the measured roughness density values,and found that Raupach's roughness correction worked very well in the simulation of threshold friction velocity in the stony desert.This means that the results of our stone measurement can be applied to a numerical dust model.展开更多
Understanding the spatial pattern of plant species diversity and the influencing factors has important implications for the conservation and management of ecosystem biodiversity. The transitional zone between biomes i...Understanding the spatial pattern of plant species diversity and the influencing factors has important implications for the conservation and management of ecosystem biodiversity. The transitional zone between biomes in desert ecosystems, however, has received little attention in that regard. In this study, we conducted a quantitative field survey (including 187 sampling plots) in a 40-km2 study area to determine the spatial pattern of plant species diversity and analyze the influencing factors in a Gobi Desert within the Heihe River Basin, Northwest China. A total of 42 plant species belonging to 16 families and 39 genera were recorded. Shrub and semi-shrub species generally represented the major part of the plant communities (covering 90% of the land surface), while annual and perennial herbaceous species occupied a large proportion of the total recorded species (71%). Patrick richness index (R), Shannon-Wiener diversity index (H), Simpson's dominance index (D), and Pielou's evenness index (I) were all moderately spadaUy variable, and the variability increased with increasing sampling area. The semivariograms for R and H' were best fitted with Gaussian models while the semivariograms for D andJ were best fitted with exponential models. Nugget-to-still ratios indicated a moderate spatial autocorrelation for R, H', and D while a strong spatial autocorrelation was observed for J. The spatial patterns of R and H' were closely related to the geographic location within the study area, with lower values near the oasis and higher values near the mountains. However, there was an opposite trend for D. R, H', and D were significantly correlated with elevation, soil texture, bulk density, saturated hydraulic conductivity, and total porosity (P〈0.05). Generally speaking, locations at higher elevations tended to have higher species richness and diversity and the higher elevations were characterized by higher values in sand and gravel contents, bulk density, and saturated hydraulic conductivity and also by lower values in total porosity. Furthermore, spatial variability of plant species diversity was dependent on the sampling area.展开更多
A precise understanding of the aboveground biomass of desert steppe and its spatio-temporal variation is important to understand how arid ecosystems respond to climate change and to ensure that scarce grassland resour...A precise understanding of the aboveground biomass of desert steppe and its spatio-temporal variation is important to understand how arid ecosystems respond to climate change and to ensure that scarce grassland resources are used rationally. On the basis of 756 ground survey quadrats sampled in western Inner Mongolia steppe in 2005-2011 and remote sensing data from the Moderate Resolu- tion Imaging Spectroradiometer (MODIS)--the normalized difference vegetation index (NDVI) dataset for the period of 2001-2011--we developed a statistical model to estimate the aboveground biomass of the desert steppe and further explored the rela- tionships between aboveground biomass and climate factors. The conclusions are as follows: (1) the aboveground biomass of the steppe in the research area was 5.27 Tg (1 Tg=1012 g) on average over 11 years; between 2001 and 2011, the aboveground biomass of the western Inner Mongolia steppe exhibited fluctuations, with no significant trend over time; (2) the aboveground biomass of the steppe in the research area exhibits distinct spatial variation and generally decreases gradually from southeast to northwest; and (3) the important factor causing intemnnual variations in aboveground biomass is precipitation during the period from January to July, but we did not find a significant relationship between the aboveground biomass and the corresponding temperature changes. The precipitation in this period is also an important factor influencing the spatial distribution of aboveground biomass (R2=0.39, P〈0.001), while the temperature might be a minor factor (R2=0.12, P〈0.01 ). The uncertainties in our estimate are primarily due to uncertainty in converting the fresh grass yield estimates to dry weight, underestimates of the biomass of shrubs, and error in remote sensing dataset.展开更多
The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding eff...The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through.展开更多
Desert-based adventure tourism is a rapidly expanding tourism market segment after the late 20^th century around the world. Perhaps the most significant factor in the development of desert adventure tourism is the ext...Desert-based adventure tourism is a rapidly expanding tourism market segment after the late 20^th century around the world. Perhaps the most significant factor in the development of desert adventure tourism is the extent to which common tourists are really engaged in scientific expedition. Inner Mongolia has long been considered as the resources accumulation area of desert tourism. The investigation on the Ulan Bah Desert has discovered that the desert animals, the vegetation, the insects, the fungus, tire landfrom and the climate are impressive for both the researchers and the mass tourists. After the resources investigation a survey was carried out in 2007 to get the detailed information of the tourists' attitude toward the planning desert scientific product in the Ulan Buh Desert. Based on the resources and market analysis, this paper tries to make a planning of the desert scientific expedition tour of the Ulan Bah Desert. The planning includes the functional division, expedition route design, tour-explaining system, facility of safety guaranty and service planning, and the professional training base.展开更多
Recent years have witnessed the popularity of desert tourism as a fashion tourism product in the 21^(st) century along with the increasing demand for personalized tourism for tourists. The academic community is paying...Recent years have witnessed the popularity of desert tourism as a fashion tourism product in the 21^(st) century along with the increasing demand for personalized tourism for tourists. The academic community is paying growing attention to desert tourism research, but there is little research on the perception of tourists about the image of desert tourism destinations in Inner Mongolia. With Inner Mongolia as the object of the study, this paper analyzed the image perception and evaluation of tourists for Inner Mongolia desert tourism destinations from three aspects of cognitive image perception, emotional image perception, and overall image perception according to the "cognitive-emotional" model, with the help of relevant network text analysis methods, and proposed some suggestions for the future development of desert tourism destinations in Inner Mongolia from the aspects of increasing desert humanities tourism resources and product development, improving scenic spot management ability, improving tourism service quality, improving tourism infrastructure construction and strengthening environmental protection. It is hoped that this paper can provide a reference for improving the image of Inner Mongolia desert tourism destinations and improving the tourist experience.展开更多
The most striking contrasts that are found on the continents in paleogeographic reconstructions of the end of the Mesozoic era are the occurrence on the place of the disappeared humid subtropics of the largest Gobi De...The most striking contrasts that are found on the continents in paleogeographic reconstructions of the end of the Mesozoic era are the occurrence on the place of the disappeared humid subtropics of the largest Gobi Desert in Eurasia with air temperatures falling below 50°from the freezing point and annual precipitation totals at the level of 100 mm. Science does not know the processes that can lead to a cooling of the atmosphere at 70°and other equally radical changes in nature with a stable position of the blocks of the earth’s crust in space. Changes in the environment of this magnitude can only be the result of land moving northward for a distance equal to about half the radius of the Earth. Titanosaurs, described by the remains in the Gobi deposits, had a body volume, which at modern gravity corresponds to a mass of 10 to 30 ton. However, animals with such a mass and such growth could not exist now. To create the necessary pressure in the vessels and provide energy to the body, Mongolian sauropods would need a heart of 2 - 3 m in diameter. Known types of muscle tissue are unable to maintain an elongated neck and head with a mass of more than a ton. The femur bones of four-legged dinosaurs had strength sufficient to move on land only animals weighing no more than 5 - 7 tons. The bones of giant bipedal dinosaurs at a constant gravitational field would have to be subjected to specific loads, several times greater than the bones of modern elephants, which is excluded. The natural conclusion about the action of a lesser gravity in the Mesozoic provides a solution to the mystery of the truly global spread in that era of bipedal mode of movement as the most energy efficient.展开更多
Reconstructing the evolutionary history of the Gobi deserts developed from alluvial sediments in arid regions has great significance in unraveling changes in both tectonic activity and climate.However,such work is lim...Reconstructing the evolutionary history of the Gobi deserts developed from alluvial sediments in arid regions has great significance in unraveling changes in both tectonic activity and climate.However,such work is limited by a lack of suitable dating material preserved in the Gobi Desert,but cosmogenic 10Be has great potential to date the Gobi deserts.In the present study,10Be in quartz gravel from the Gobi deserts of the Ejina Basin in Inner Mongolia of China has been measured to assess exposure ages.Results show that the Gobi Desert in the northern margin of the basin developed 420 ka ago,whereas the Gobi Desert that developed from alluvial plains in the Heihe River drainage basin came about during the last 190 ka.The latter developed gradually northward and eastward to modern terminal lakes of the river.These temporal and spatial variations in the Gobi deserts are a consequence of alluvial processes influenced by Tibetan Plateau uplift and tectonic activities within the Ejina Basin.Possible episodes of Gobi Desert development within the last 420 ka indicate that the advance/retreat of alpine glaciers during glacial/interglacial cycles might have been the dominant factor to influencing the alluvial intensity and water volume in the basin.Intense floods and large water volumes would mainly occur during the short deglacial periods.展开更多
Tumbleweeds participate in a common seasonal biological process in temperate grasslands,creating hanging grass fences during the grass-withering season that result in distinct ecological phenomena.In this study,we add...Tumbleweeds participate in a common seasonal biological process in temperate grasslands,creating hanging grass fences during the grass-withering season that result in distinct ecological phenomena.In this study,we addressed the urgent need to understand and restore the degraded desert steppe in Central Mongolia,particularly considering the observed vegetation edge effects around hanging grass fences.Using field surveys conducted in 2019 and 2021 in the severely degraded desert steppe of Central Mongolia,we assessed vegetation parameters and soil physical and chemical properties influenced by hanging grass fences and identified the key environmental factors affecting vegetation changes.The results indicate that the edge effects of hanging grass fences led to changes in species distributions,resulting in significant differences in species composition between the desert steppe's interior and edge areas.Vegetation parameters and soil physical and chemical properties exhibited nonlinear responses to the edge effects of hanging grass fences,with changes in vegetation coverage,aboveground biomass,and soil sand content peaking at 26.5,16.5,and 6.5 m on the leeward side of hanging grass fences,respectively.In the absence of sand dune formation,the accumulation of soil organic carbon and available potassium were identified as crucial factors driving species composition and increasing vegetation coverage.Changes in species composition and plant density were primarily influenced by soil sand content,electrical conductivity,and sand accumulation thickness.These findings suggest that hanging grass fences have the potential to alter vegetation habitats,promote vegetation growth,and control soil erosion in the degraded desert steppe of Central Mongolia.Therefore,in the degraded desert steppe,the restoration potential of hanging grass fences during the enclosure process should be fully considered.展开更多
Impacts of Quaternary environmental changes on mammal faunas of central Asia remain poorly understood due to a lack of comprehensive phylogeographic sampling for most species.To help address this knowledge gap,we cond...Impacts of Quaternary environmental changes on mammal faunas of central Asia remain poorly understood due to a lack of comprehensive phylogeographic sampling for most species.To help address this knowledge gap,we conducted the most extensive molecular analysis to date of the long-tailed ground squirrel (Urocitellus undulatus Pallas 1778) in Mongolia,a country that comprises the southern core of this species' range.Drawing on material from recent collaborative field expeditions,we genotyped 128 individuals at two mitochondrial genes (cytochrome b and cytochrome oxidase Ⅰ;1797 bp total).Phylogenetic inference supports the existence of two deeply divergent infraspecific lineages (corresponding to subspecies U.u.undulatus and U.u.eversmanni),a result in agreement with previous molecular investigations but discordant with patterns of range-wide craniometric and external phenotypic variation.In the widespread western eversmanni lineage,we recovered geographically-associated clades from the:(a) Khangai,(b) Mongolian Altai,and (c) Govi Altai mountain ranges.Phylogeographic structure in U.u.eversmanni is consistent with an isolation-by-distance model;however,genetic distances are significantly lower than among subspecies,and intra-clade relationships are largely unresolved.The latter patterns,as well as the relatively higher nucleotide polymorphism of populations from the Great Lakes Depression of northwestern Mongolia,suggest a history of range shifts into these lowland areas in response to Pleistocene glaciation and environmental change,followed by upslope movements and mitochondrial lineage sorting with Holocene aridification.Our study illuminates possible historical mechanisms responsible for U.undulatus genetic structure and contributes to a framework for ongoing exploration of mammalian response to past and present climate change in central Asia.展开更多
The wild camel (Camelus ferus) is a critically endangered large ungulate, surviving in just three distinct populations located in the Taklamakan Desert, China;deserts near Lop Nuur, China;and in China and Mongolia wit...The wild camel (Camelus ferus) is a critically endangered large ungulate, surviving in just three distinct populations located in the Taklamakan Desert, China;deserts near Lop Nuur, China;and in China and Mongolia within and adjacent to Mongolia’s Great Gobi Strictly Protected Area (GGSPA). The population surviving in Mongolia remains poorly researched, but as few as 500 individuals may survive, although its distribution has remained relatively constant over the past 30 - 50 years. This study aimed at identifying potentially important environmental factors that influence the distribution of wild camels in Mongolia and predicting seasonal movement. We predicted distribution by season using presence only data and selected environmental predictors, including land surface temperature, normalized difference vegetation indices (NDVI), water sources, vegetation and soil. Model predictions revealed that land surface temperature in summer correlated significantly with wild camel distribution, with camels occurring in cooler areas. Abundance of biomass did not significantly correlate with camel distribution. Camels occurred in areas with intermediate levels of NDVI in most seasons, implying that they may base foraging decisions on forage quantity, not quality. Positive correlations of camel distribution with higher NDVI in summer (P = 0.03) suggests that they may prefer herbaceous species that appear after rainfall. Models indicate distance to water sources may be critical for camel distribution in all seasons. Camel occurrence correlated with areas containing shallow mountain soils in summer. Camels displayed no significant habitat correlations in other seasons, yet ranges differed among all seasons. Camels used a common region in spring, summer and autumn that we believe represents the core of the species’ annual range. Wild camel distribution during winter varied significantly from other seasons. Our modelling led to a predicted distribution range that was consistent with ranges described by previous research, indicating consistency between survey data and satellite tracking data.展开更多
Ejina rangeland is located in Alashan Laegue, west part of Innermongolian Autono-mous Region with a area of 1.22×10~4 square Km of which the available area is 6940 squareKm, Because the varieties of reasons, such...Ejina rangeland is located in Alashan Laegue, west part of Innermongolian Autono-mous Region with a area of 1.22×10~4 square Km of which the available area is 6940 squareKm, Because the varieties of reasons, such as natural, human, historic and present, therunoff of Ejina River is decreased year by year, the irrigated area of the rangeland is de-creased. The deterioration of the ecologic environment is caused by the degeneration of展开更多
The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To in...The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To investigate the contribution of the TD and the GD to dust concentrations in East Asia as a whole, dust emissions, transport, and deposition over the TD and the GD in different seasons from 2007 to 2011 were systematically compared, based on the Weather Research and Forecasting model coupled with Chemistry(WRF-Chem). Dust emissions, uplift, and long-range transport related to these two dust source regions were markedly different due to differences in topography, elevation, thermal conditions, and atmospheric circulation. Specifically,the topography of the GD is relatively flat, and at a high elevation, and the area is under the influence of two jet streams at high altitudes, resulting in high wind speeds in the upper atmosphere. Deep convective mixing enables the descending branch of jet streams to continuously transport momentum downward to the mid-troposphere, leading to enhanced wind speeds in the lower troposphere over the GD which favors the vertical uplift of the GD dust particles. Therefore, the GD dust was very likely to be transported under the effect of strong westerly jets, and thus played the most important role in contributing to dust concentrations in East Asia. Approximately 35% and 31% of dust emitted from the GD transported to remote areas in East Asia in spring and summer, respectively. The TD has the highest dust emission capabilities in East Asia, with emissions of about 70.54 Tg yr.1 in spring, accounting for 42% of the total dust emissions in East Asia. However, the TD is located in the Tarim Basin and surrounded by mountains on three sides. Furthermore, the dominant surface wind direction is eastward and the average wind speed at high altitudes is relatively small over the TD. As a result, the TD dust particles are not easily transported outside the Tarim Basin, such that most of the dust particles are re-deposited after uplift, at a total deposition rate of about 40 g m.2. It is only when the TD dust particles are uplifted above 4 km, and entrained in westerlies that they begin to undergo a long-range transport. Therefore,the contribution of the TD dust to East Asian dust concentrations was relatively small. Only 25% and 23% of the TD dust was transported to remote areas over East Asia in spring and summer, respectively.展开更多
The heat storage terms over an ideal(non-vegetated) horizontal desert surface may be very important and easily neglected in surface energy balance studies.In this paper,based on a field experiment over the Gobi Dese...The heat storage terms over an ideal(non-vegetated) horizontal desert surface may be very important and easily neglected in surface energy balance studies.In this paper,based on a field experiment over the Gobi Desert in the middle part of the Hexi Corridor in Northwest China(39 05 N,100 16 E;1457-m elevation),we studied the energy budget closure and evaluated the contribution of the heat storage terms to the closure of the surface energy balance.There were imbalances of 8% and 15% in summer and winter,respectively,if the heat storage terms were not taken into account.For both seasons,a nearly perfect result of the surface energy closure(99%) was obtained by inclusion of the estimates of heat storage terms.The soil heat storage term improved the surface energy imbalance by about 6% in summer and 13% in winter,and the air enthalpy storage term improved it by about 0.6% in summer and 1% in winter,while the contribution of the atmospheric moisture changes could be ignored.展开更多
Polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE)technique was employed to examine the seasonal dynamic changes in bacterial community composition in the Inner Mongolia desert steppe using sp...Polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE)technique was employed to examine the seasonal dynamic changes in bacterial community composition in the Inner Mongolia desert steppe using specific primers F954 and R1369.Bright and reproducible bands were sequenced,and the phylogenic tree was constructed.The results show that the bacterial community composition changed between different seasons.The specific bands were different between the sampling sites with light and heavy levels of degraded grassland.Three main types of bacteria constituting the microbial community in the Inner Mongolia desert steppe belonged to the α,γ and δ-sub phyla of Proteobacteria,Bacteroidetes and Acidobacteria.The unculturable bacteria accounted for 69%of the whole bacterial community of the Inner Mongolia desert steppe.展开更多
THE plane flew for about an hour,transporting me from Beijing to adeserted land,the Gobi desert,where sits the China Arms Testing &Training Target Field.For about 40 years,thousands of scientists and technicianshave ...THE plane flew for about an hour,transporting me from Beijing to adeserted land,the Gobi desert,where sits the China Arms Testing &Training Target Field.For about 40 years,thousands of scientists and technicianshave made hundreds of greatachievements in the history of Chinesearms testing;among them are a lot ofunusual women making their own quietcontributions.展开更多
This preliminary investigation focuses on the comparison of the recent pollen precipitation and its related vegetation of eight different plant communities in the Alashan Region, the most western part of the Inner Mon...This preliminary investigation focuses on the comparison of the recent pollen precipitation and its related vegetation of eight different plant communities in the Alashan Region, the most western part of the Inner Mongolia Autonomous Region. Most zonal and azonal communities can be well identified by their pollen spectra. Relative pollen production factors of various plant taxa have been calculated and the following sequences from over- to under represented taxa have been found for zonal vegetation: Chenopodiaceae, Artemisia, Ephedra, Nitraria, Reaumuria, Calligonum, Zygophyllum; and for azonal vegetation: Peganum, Populus, Tamarix, Lycium.展开更多
The Tsagaanbulag Formation of the Ulaan-Shand section in the Shine Jinst area was assigned to Silurian (Wenlock-Pridoli) previously. But the present authors have found some very important conodonts, including Lanea om...The Tsagaanbulag Formation of the Ulaan-Shand section in the Shine Jinst area was assigned to Silurian (Wenlock-Pridoli) previously. But the present authors have found some very important conodonts, including Lanea omoalpha, Amydrotaxis johnsoni, "Ozarkodina"planililingua, Pedavis sp., from the Tsagaanbulag and Amansair formations, clearly indicating that these two formations should be assigned to middle Lochkovian which are widely distributed in China and Mongolia. The existence of the marine Wenlockain and early Ludlovian deposits in Mongolia is a noteworthy problem.展开更多
基金This research was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region,China(2022QN04003)the Central Government to Guide Local Scientific and Technological Development(2021ZY0031).
文摘Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the characteristics of drought events.Studying precipitation,reference evapotranspiration(ET_(0)),and vegetation yield can derive information to help conserve water resources in grassland ecosystems in arid and semi-arid regions.In this study,the interactions of precipitation,ET_(0),and vegetation yield in Darhan Muminggan Joint Banner(DMJB),a desert steppe in Inner Mongolia Autonomous Region,China were explored using two-dimensional(2D)and three-dimensional(3D)joint distribution models.Three types of Copula functions were applied to quantitatively analyze the joint distribution probability of different combinations of precipitation,ET_(0),and vegetation yield.For the precipitation–ET_(0)dry–wet type,the 2D joint distribution probability with precipitation≤245.69 mm/a or ET_(0)≥959.20 mm/a in DMJB was approximately 0.60,while the joint distribution probability with precipitation≤245.69 mm/a and ET_(0)≥959.20 mm/a was approximately 0.20.Correspondingly,the joint return period that at least one of the two events(precipitation was dry or ET_(0)was wet)occurred was 2 a,and the co-occurrence return period that both events(precipitation was dry and ET_(0)was wet)occurred was 5 a.Under this condition,the interval between dry and wet events would be short,the water supply and demand were unbalanced,and the water demand of vegetation would not be met.In addition,when precipitation remained stable and ET_(0)increased,the 3D joint distribution probability that vegetation yield would decrease due to water shortage in the precipitation–ET_(0)dry–wet years could reach up to 0.60–0.70.In future work,irrigation activities and water allocation criteria need to be implemented to increase vegetation yield and the safety of water resources in the desert steppe of Inner Mongolia.
基金This research was supported by the National Natural Science Foundation of China(31761143001,31870316)the Natural Science Foundation of Beijing(7202109)+4 种基金Minzu University of China(KLEMZZ201904,KLEM-ZZ201906,YLDXXK201819)the Ministry of Ecology and Environment of China(2019HB2096001006)Jiansheng Fresh Herb Medicine R&D Foundation(JSYY-20190101-043)the Ministry of Education of China(B08044)Colleagues and Dr.Bayartungalag from the institute of Geography and Geoecology,Mongolian Academy of Sciences provided assistances in the field surveys.Yingjie Song at Minzu University of China provided useful comments.We are grateful to all of them.
文摘Cistanche deserticola is an important medicinal plant in Mongolia.Despite its significant role in local healing systems,little traditional knowledge had been reported.The present study investigated folk names of C.deserticola and other species of the same community in Umnugobi Province,South Gobi region of Mongolia,based on ethnobotanical approaches.The high correspondence between folk names and scientific names of plant species occurring in Cistanche-associated community shows the scientific meaning of folk nomenclature and classification in Mongolia.The Mongolian and folk names of plants were formed on the basis of observations and understanding of wild plants including their morphology,phenology and traditional uses as well.Results from this study will support the conservation of C.deserticola itself,a rare and endangered plant species listed in the Monglian Red Data Book.Our documentation of folk nomenclature based on 96 plant species in the Cistanche community,as a part of traditional knowledge associated with biodiversity,will be very helpful for making strategy of plant biodiversity conservation in Mongolia.
基金This study was supported by the Arid Land Research Center's Project(Impacts of Climate Change on Drylands:Assessment and Adaptation,funded by the Japan's Ministry of Education,Culture,Sports,Science,and Technology)the Grants-in-Aid for Scientific Research(JSPS KAKENHI)(15H05115,17H01616,16H02712,and 25220201)+1 种基金the Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency(JPMEERF20205001)This study was funded by the Joint Research Program of Arid Land Research Center,Tottori University(31C2003 and 31C2012).
文摘Non-erodible elements such as stones and vegetation are key to controlling wind erosion and dust emission in drylands.Stony deserts are widely distributed in the Gobi Desert,but the effect of stones on wind erosion and dust emission have not been well studied,except under artificial conditions.In this study,we evaluated the effect of stones on wind erosion and dust emission by measuring the sand saltation threshold in a stony desert in Tsogt-Ovoo in the Gobi Desert,Mongolia,under natural surface conditions during sand and dust storms.We quantified the amount of stones by measuring the roughness density,and determined the threshold friction velocity for sand saltation by measuring wind speed and sand saltation count.Our results showed that the threshold friction velocity increased with the roughness density of stones.In the northern part of the study area,where neither a surface crust nor vegetation was observed,the roughness density of stones was 0.000 in a topographic depression(TD),0.050 on a northern slope(N.SL),and 0.160 on the northern mountain(N.MT).The mean threshold friction velocity values were 0.23,0.41,and 0.57 m/s at the TD,N.SL,and N.MT sites,respectively.In the southern part of the study area,the roughness density values of stones were 0.000 and 0.070-0.320 at the TD and southern slope sites,respectively,and the mean threshold friction velocities were 0.23 and 0.45-0.71 m/s,respectively.We further compared the observed threshold friction velocities with simulated threshold friction velocities using Raupach's theoretical roughness correction and the measured roughness density values,and found that Raupach's roughness correction worked very well in the simulation of threshold friction velocity in the stony desert.This means that the results of our stone measurement can be applied to a numerical dust model.
基金financially supported by the National Natural Science Foundation of China(91025018)the Action Plan for West Development Project of Chinese Academy of Sciences(KZCX2-XB3-13)
文摘Understanding the spatial pattern of plant species diversity and the influencing factors has important implications for the conservation and management of ecosystem biodiversity. The transitional zone between biomes in desert ecosystems, however, has received little attention in that regard. In this study, we conducted a quantitative field survey (including 187 sampling plots) in a 40-km2 study area to determine the spatial pattern of plant species diversity and analyze the influencing factors in a Gobi Desert within the Heihe River Basin, Northwest China. A total of 42 plant species belonging to 16 families and 39 genera were recorded. Shrub and semi-shrub species generally represented the major part of the plant communities (covering 90% of the land surface), while annual and perennial herbaceous species occupied a large proportion of the total recorded species (71%). Patrick richness index (R), Shannon-Wiener diversity index (H), Simpson's dominance index (D), and Pielou's evenness index (I) were all moderately spadaUy variable, and the variability increased with increasing sampling area. The semivariograms for R and H' were best fitted with Gaussian models while the semivariograms for D andJ were best fitted with exponential models. Nugget-to-still ratios indicated a moderate spatial autocorrelation for R, H', and D while a strong spatial autocorrelation was observed for J. The spatial patterns of R and H' were closely related to the geographic location within the study area, with lower values near the oasis and higher values near the mountains. However, there was an opposite trend for D. R, H', and D were significantly correlated with elevation, soil texture, bulk density, saturated hydraulic conductivity, and total porosity (P〈0.05). Generally speaking, locations at higher elevations tended to have higher species richness and diversity and the higher elevations were characterized by higher values in sand and gravel contents, bulk density, and saturated hydraulic conductivity and also by lower values in total porosity. Furthermore, spatial variability of plant species diversity was dependent on the sampling area.
基金supported by the National High Technology Project "863" (Nos. 2006AA10Z242, 2008AA121805)National Natural Science Foundation of China (NSFC, 40701055)
文摘A precise understanding of the aboveground biomass of desert steppe and its spatio-temporal variation is important to understand how arid ecosystems respond to climate change and to ensure that scarce grassland resources are used rationally. On the basis of 756 ground survey quadrats sampled in western Inner Mongolia steppe in 2005-2011 and remote sensing data from the Moderate Resolu- tion Imaging Spectroradiometer (MODIS)--the normalized difference vegetation index (NDVI) dataset for the period of 2001-2011--we developed a statistical model to estimate the aboveground biomass of the desert steppe and further explored the rela- tionships between aboveground biomass and climate factors. The conclusions are as follows: (1) the aboveground biomass of the steppe in the research area was 5.27 Tg (1 Tg=1012 g) on average over 11 years; between 2001 and 2011, the aboveground biomass of the western Inner Mongolia steppe exhibited fluctuations, with no significant trend over time; (2) the aboveground biomass of the steppe in the research area exhibits distinct spatial variation and generally decreases gradually from southeast to northwest; and (3) the important factor causing intemnnual variations in aboveground biomass is precipitation during the period from January to July, but we did not find a significant relationship between the aboveground biomass and the corresponding temperature changes. The precipitation in this period is also an important factor influencing the spatial distribution of aboveground biomass (R2=0.39, P〈0.001), while the temperature might be a minor factor (R2=0.12, P〈0.01 ). The uncertainties in our estimate are primarily due to uncertainty in converting the fresh grass yield estimates to dry weight, underestimates of the biomass of shrubs, and error in remote sensing dataset.
基金financially supported by the Scientific and Technological Services Network Planning Project of Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (HHS-TSS-STS-1504)the Technological Research and Developmental Planning Projects of China Railway Corporation (2015G005-B)the National Natural Science Foundation of China (41501010, 41401611)
文摘The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through.
基金supported by China Postdoctoral Science Foundation (Grant No. 20060400493).
文摘Desert-based adventure tourism is a rapidly expanding tourism market segment after the late 20^th century around the world. Perhaps the most significant factor in the development of desert adventure tourism is the extent to which common tourists are really engaged in scientific expedition. Inner Mongolia has long been considered as the resources accumulation area of desert tourism. The investigation on the Ulan Bah Desert has discovered that the desert animals, the vegetation, the insects, the fungus, tire landfrom and the climate are impressive for both the researchers and the mass tourists. After the resources investigation a survey was carried out in 2007 to get the detailed information of the tourists' attitude toward the planning desert scientific product in the Ulan Buh Desert. Based on the resources and market analysis, this paper tries to make a planning of the desert scientific expedition tour of the Ulan Bah Desert. The planning includes the functional division, expedition route design, tour-explaining system, facility of safety guaranty and service planning, and the professional training base.
基金Sponsored by National Social Science Fund of China(18BGL148)Humanities and Social Sciences Research Project of the Ministry of Education(18XJC850004)Scientific Research Project of Higher Education Funded by the Education Department of Inner Mongolia(NJSY17020)
文摘Recent years have witnessed the popularity of desert tourism as a fashion tourism product in the 21^(st) century along with the increasing demand for personalized tourism for tourists. The academic community is paying growing attention to desert tourism research, but there is little research on the perception of tourists about the image of desert tourism destinations in Inner Mongolia. With Inner Mongolia as the object of the study, this paper analyzed the image perception and evaluation of tourists for Inner Mongolia desert tourism destinations from three aspects of cognitive image perception, emotional image perception, and overall image perception according to the "cognitive-emotional" model, with the help of relevant network text analysis methods, and proposed some suggestions for the future development of desert tourism destinations in Inner Mongolia from the aspects of increasing desert humanities tourism resources and product development, improving scenic spot management ability, improving tourism service quality, improving tourism infrastructure construction and strengthening environmental protection. It is hoped that this paper can provide a reference for improving the image of Inner Mongolia desert tourism destinations and improving the tourist experience.
文摘The most striking contrasts that are found on the continents in paleogeographic reconstructions of the end of the Mesozoic era are the occurrence on the place of the disappeared humid subtropics of the largest Gobi Desert in Eurasia with air temperatures falling below 50°from the freezing point and annual precipitation totals at the level of 100 mm. Science does not know the processes that can lead to a cooling of the atmosphere at 70°and other equally radical changes in nature with a stable position of the blocks of the earth’s crust in space. Changes in the environment of this magnitude can only be the result of land moving northward for a distance equal to about half the radius of the Earth. Titanosaurs, described by the remains in the Gobi deposits, had a body volume, which at modern gravity corresponds to a mass of 10 to 30 ton. However, animals with such a mass and such growth could not exist now. To create the necessary pressure in the vessels and provide energy to the body, Mongolian sauropods would need a heart of 2 - 3 m in diameter. Known types of muscle tissue are unable to maintain an elongated neck and head with a mass of more than a ton. The femur bones of four-legged dinosaurs had strength sufficient to move on land only animals weighing no more than 5 - 7 tons. The bones of giant bipedal dinosaurs at a constant gravitational field would have to be subjected to specific loads, several times greater than the bones of modern elephants, which is excluded. The natural conclusion about the action of a lesser gravity in the Mesozoic provides a solution to the mystery of the truly global spread in that era of bipedal mode of movement as the most energy efficient.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-YW-117)the National Natural Science Foundation of China(40841022 and 40373046)
文摘Reconstructing the evolutionary history of the Gobi deserts developed from alluvial sediments in arid regions has great significance in unraveling changes in both tectonic activity and climate.However,such work is limited by a lack of suitable dating material preserved in the Gobi Desert,but cosmogenic 10Be has great potential to date the Gobi deserts.In the present study,10Be in quartz gravel from the Gobi deserts of the Ejina Basin in Inner Mongolia of China has been measured to assess exposure ages.Results show that the Gobi Desert in the northern margin of the basin developed 420 ka ago,whereas the Gobi Desert that developed from alluvial plains in the Heihe River drainage basin came about during the last 190 ka.The latter developed gradually northward and eastward to modern terminal lakes of the river.These temporal and spatial variations in the Gobi deserts are a consequence of alluvial processes influenced by Tibetan Plateau uplift and tectonic activities within the Ejina Basin.Possible episodes of Gobi Desert development within the last 420 ka indicate that the advance/retreat of alpine glaciers during glacial/interglacial cycles might have been the dominant factor to influencing the alluvial intensity and water volume in the basin.Intense floods and large water volumes would mainly occur during the short deglacial periods.
基金supported by the Third Xinjiang Scientific Expedition and Research Program(2021xjkk0305)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA2003020201)the Key Intergovernmental Projects for International Scientific and Technological Innovation Cooperation of the National Key Research and Development Program of China(2017YFE0109200).
文摘Tumbleweeds participate in a common seasonal biological process in temperate grasslands,creating hanging grass fences during the grass-withering season that result in distinct ecological phenomena.In this study,we addressed the urgent need to understand and restore the degraded desert steppe in Central Mongolia,particularly considering the observed vegetation edge effects around hanging grass fences.Using field surveys conducted in 2019 and 2021 in the severely degraded desert steppe of Central Mongolia,we assessed vegetation parameters and soil physical and chemical properties influenced by hanging grass fences and identified the key environmental factors affecting vegetation changes.The results indicate that the edge effects of hanging grass fences led to changes in species distributions,resulting in significant differences in species composition between the desert steppe's interior and edge areas.Vegetation parameters and soil physical and chemical properties exhibited nonlinear responses to the edge effects of hanging grass fences,with changes in vegetation coverage,aboveground biomass,and soil sand content peaking at 26.5,16.5,and 6.5 m on the leeward side of hanging grass fences,respectively.In the absence of sand dune formation,the accumulation of soil organic carbon and available potassium were identified as crucial factors driving species composition and increasing vegetation coverage.Changes in species composition and plant density were primarily influenced by soil sand content,electrical conductivity,and sand accumulation thickness.These findings suggest that hanging grass fences have the potential to alter vegetation habitats,promote vegetation growth,and control soil erosion in the degraded desert steppe of Central Mongolia.Therefore,in the degraded desert steppe,the restoration potential of hanging grass fences during the enclosure process should be fully considered.
基金funded primarily by grants from the National Science Foundation(USADBI-9411976 supplement(1999),DEB-0717214(2009-2012),DEB-1258010(2015-2016))+2 种基金B.S.M. was partially supported by a Peter Buck Predoctoral Fellowship during the 2015 Mongolian expeditionsupported by the National Science Foundation(DEB-1258010)the American Society of Mammalogists(ASM Fellowship to B.S.M.)
文摘Impacts of Quaternary environmental changes on mammal faunas of central Asia remain poorly understood due to a lack of comprehensive phylogeographic sampling for most species.To help address this knowledge gap,we conducted the most extensive molecular analysis to date of the long-tailed ground squirrel (Urocitellus undulatus Pallas 1778) in Mongolia,a country that comprises the southern core of this species' range.Drawing on material from recent collaborative field expeditions,we genotyped 128 individuals at two mitochondrial genes (cytochrome b and cytochrome oxidase Ⅰ;1797 bp total).Phylogenetic inference supports the existence of two deeply divergent infraspecific lineages (corresponding to subspecies U.u.undulatus and U.u.eversmanni),a result in agreement with previous molecular investigations but discordant with patterns of range-wide craniometric and external phenotypic variation.In the widespread western eversmanni lineage,we recovered geographically-associated clades from the:(a) Khangai,(b) Mongolian Altai,and (c) Govi Altai mountain ranges.Phylogeographic structure in U.u.eversmanni is consistent with an isolation-by-distance model;however,genetic distances are significantly lower than among subspecies,and intra-clade relationships are largely unresolved.The latter patterns,as well as the relatively higher nucleotide polymorphism of populations from the Great Lakes Depression of northwestern Mongolia,suggest a history of range shifts into these lowland areas in response to Pleistocene glaciation and environmental change,followed by upslope movements and mitochondrial lineage sorting with Holocene aridification.Our study illuminates possible historical mechanisms responsible for U.undulatus genetic structure and contributes to a framework for ongoing exploration of mammalian response to past and present climate change in central Asia.
文摘The wild camel (Camelus ferus) is a critically endangered large ungulate, surviving in just three distinct populations located in the Taklamakan Desert, China;deserts near Lop Nuur, China;and in China and Mongolia within and adjacent to Mongolia’s Great Gobi Strictly Protected Area (GGSPA). The population surviving in Mongolia remains poorly researched, but as few as 500 individuals may survive, although its distribution has remained relatively constant over the past 30 - 50 years. This study aimed at identifying potentially important environmental factors that influence the distribution of wild camels in Mongolia and predicting seasonal movement. We predicted distribution by season using presence only data and selected environmental predictors, including land surface temperature, normalized difference vegetation indices (NDVI), water sources, vegetation and soil. Model predictions revealed that land surface temperature in summer correlated significantly with wild camel distribution, with camels occurring in cooler areas. Abundance of biomass did not significantly correlate with camel distribution. Camels occurred in areas with intermediate levels of NDVI in most seasons, implying that they may base foraging decisions on forage quantity, not quality. Positive correlations of camel distribution with higher NDVI in summer (P = 0.03) suggests that they may prefer herbaceous species that appear after rainfall. Models indicate distance to water sources may be critical for camel distribution in all seasons. Camel occurrence correlated with areas containing shallow mountain soils in summer. Camels displayed no significant habitat correlations in other seasons, yet ranges differed among all seasons. Camels used a common region in spring, summer and autumn that we believe represents the core of the species’ annual range. Wild camel distribution during winter varied significantly from other seasons. Our modelling led to a predicted distribution range that was consistent with ranges described by previous research, indicating consistency between survey data and satellite tracking data.
文摘Ejina rangeland is located in Alashan Laegue, west part of Innermongolian Autono-mous Region with a area of 1.22×10~4 square Km of which the available area is 6940 squareKm, Because the varieties of reasons, such as natural, human, historic and present, therunoff of Ejina River is decreased year by year, the irrigated area of the rangeland is de-creased. The deterioration of the ecologic environment is caused by the degeneration of
基金supported by the National Natural Science Foundation of China (Grant No. 41405003)Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 41521004)+1 种基金the Programme of Introducing Talents of Discipline to Universities (Grant No. B 13045)the Foundation of Key Laboratory for Semi-Arid Climate Change of the Ministry of Education in Lanzhou University
文摘The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To investigate the contribution of the TD and the GD to dust concentrations in East Asia as a whole, dust emissions, transport, and deposition over the TD and the GD in different seasons from 2007 to 2011 were systematically compared, based on the Weather Research and Forecasting model coupled with Chemistry(WRF-Chem). Dust emissions, uplift, and long-range transport related to these two dust source regions were markedly different due to differences in topography, elevation, thermal conditions, and atmospheric circulation. Specifically,the topography of the GD is relatively flat, and at a high elevation, and the area is under the influence of two jet streams at high altitudes, resulting in high wind speeds in the upper atmosphere. Deep convective mixing enables the descending branch of jet streams to continuously transport momentum downward to the mid-troposphere, leading to enhanced wind speeds in the lower troposphere over the GD which favors the vertical uplift of the GD dust particles. Therefore, the GD dust was very likely to be transported under the effect of strong westerly jets, and thus played the most important role in contributing to dust concentrations in East Asia. Approximately 35% and 31% of dust emitted from the GD transported to remote areas in East Asia in spring and summer, respectively. The TD has the highest dust emission capabilities in East Asia, with emissions of about 70.54 Tg yr.1 in spring, accounting for 42% of the total dust emissions in East Asia. However, the TD is located in the Tarim Basin and surrounded by mountains on three sides. Furthermore, the dominant surface wind direction is eastward and the average wind speed at high altitudes is relatively small over the TD. As a result, the TD dust particles are not easily transported outside the Tarim Basin, such that most of the dust particles are re-deposited after uplift, at a total deposition rate of about 40 g m.2. It is only when the TD dust particles are uplifted above 4 km, and entrained in westerlies that they begin to undergo a long-range transport. Therefore,the contribution of the TD dust to East Asian dust concentrations was relatively small. Only 25% and 23% of the TD dust was transported to remote areas over East Asia in spring and summer, respectively.
基金Supported by the National Basic Research and Development (973) Program of China (2012CB955304)National Natural Science Foundation of China (40575006 and 40830957)China Meteorological Administration Special Public Welfare Research Fund(GYHY201106029 and GYHY200806021)
文摘The heat storage terms over an ideal(non-vegetated) horizontal desert surface may be very important and easily neglected in surface energy balance studies.In this paper,based on a field experiment over the Gobi Desert in the middle part of the Hexi Corridor in Northwest China(39 05 N,100 16 E;1457-m elevation),we studied the energy budget closure and evaluated the contribution of the heat storage terms to the closure of the surface energy balance.There were imbalances of 8% and 15% in summer and winter,respectively,if the heat storage terms were not taken into account.For both seasons,a nearly perfect result of the surface energy closure(99%) was obtained by inclusion of the estimates of heat storage terms.The soil heat storage term improved the surface energy imbalance by about 6% in summer and 13% in winter,and the air enthalpy storage term improved it by about 0.6% in summer and 1% in winter,while the contribution of the atmospheric moisture changes could be ignored.
基金This work was supported by the National Natural Science Foundation of China(Grant No.30560030)the University Scientific Research Foundation of Inner Mongolia(No.NJ05099).
文摘Polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE)technique was employed to examine the seasonal dynamic changes in bacterial community composition in the Inner Mongolia desert steppe using specific primers F954 and R1369.Bright and reproducible bands were sequenced,and the phylogenic tree was constructed.The results show that the bacterial community composition changed between different seasons.The specific bands were different between the sampling sites with light and heavy levels of degraded grassland.Three main types of bacteria constituting the microbial community in the Inner Mongolia desert steppe belonged to the α,γ and δ-sub phyla of Proteobacteria,Bacteroidetes and Acidobacteria.The unculturable bacteria accounted for 69%of the whole bacterial community of the Inner Mongolia desert steppe.
文摘THE plane flew for about an hour,transporting me from Beijing to adeserted land,the Gobi desert,where sits the China Arms Testing &Training Target Field.For about 40 years,thousands of scientists and technicianshave made hundreds of greatachievements in the history of Chinesearms testing;among them are a lot ofunusual women making their own quietcontributions.
文摘This preliminary investigation focuses on the comparison of the recent pollen precipitation and its related vegetation of eight different plant communities in the Alashan Region, the most western part of the Inner Mongolia Autonomous Region. Most zonal and azonal communities can be well identified by their pollen spectra. Relative pollen production factors of various plant taxa have been calculated and the following sequences from over- to under represented taxa have been found for zonal vegetation: Chenopodiaceae, Artemisia, Ephedra, Nitraria, Reaumuria, Calligonum, Zygophyllum; and for azonal vegetation: Peganum, Populus, Tamarix, Lycium.
基金This work was supported by the State Key Laboratory of Paleobiology and Stratigraphy,Chinese Academy of Sciences(Grant No.023104)the Major Basic Research Projects of Ministry of Science and Technology,China(Grant No.G200077708).)
文摘The Tsagaanbulag Formation of the Ulaan-Shand section in the Shine Jinst area was assigned to Silurian (Wenlock-Pridoli) previously. But the present authors have found some very important conodonts, including Lanea omoalpha, Amydrotaxis johnsoni, "Ozarkodina"planililingua, Pedavis sp., from the Tsagaanbulag and Amansair formations, clearly indicating that these two formations should be assigned to middle Lochkovian which are widely distributed in China and Mongolia. The existence of the marine Wenlockain and early Ludlovian deposits in Mongolia is a noteworthy problem.