Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneo...Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneous catalysts(isolated active sites)and heterogeneous catalysts(stable and easy to separate),and are thus predicted to be able to bridge the homo-and heterogeneous catalysis.This prediction was first experimentally demonstrated in 2016.In this mini-review,we summarize the few homogeneous catalysis progresses reported recently where SACs have exhibited promising application:a)Rh/ZnO and Rh/CoO SAC have been used successfully in hydroformylation of olefin of which the activity are comparable to the homogeneous Wilkinson’s catalyst;b)a Pt/Al2O3 SAC has shown excellent performance in hydrosilylation reaction;and c)M-N-C SACs(M=Fe,Co etc.)have been applied in the activation of C–H bonds.All of these examples suggest that fabrication of suitable SACs could provide a new avenue for the heterogenization of homogeneous catalysts.These pioneering works shed new light on the recognition of single-atom catalysis in bridging the homo-and heterogeneous catalysis.展开更多
LaPO_4 and hydroxyapatite(Ca_(10)(PO_4)_6(OH)_2)are typical metal phosphates recently found to be useful for making supported metal or metal oxide catalysts,but CePO_4(also belonging to the metal phosphate family)has ...LaPO_4 and hydroxyapatite(Ca_(10)(PO_4)_6(OH)_2)are typical metal phosphates recently found to be useful for making supported metal or metal oxide catalysts,but CePO_4(also belonging to the metal phosphate family)has been rarely used to make supported catalysts.It would be interesting to develop CePO_4-supported catalysts and explore their catalytic applications.Herein,hexagonal CePO_4 nanorods(denoted as CePO_4-H),hexagonal CePO_4 nanowires(CePO_4-HNW),monoclinic CePO_4 nanoparticles(CePO_4-M),and monoclinic CePO_4 nanowires(CePO_4-MNW)prepared by different methods were used to support gold via deposition-precipitation with urea(DPU).The gold contents of these catalysts were all around 1 wt%.The catalytic activities of these Au/CePO_4 catalysts in CO oxidation were found to follow the sequence of Au/CePO_4-MNW>Au/CePO_4-HNW> Au/CePO_4-M>Au/CePO_4-H.These catalysts were characterized by inductively coupled plasma-optical emission spectroscopy(ICP-OES),N_2 adsorption–desorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),oxygen temperature-programmed desorption(O_2-TPD),and CO_2 temperature-programmed desorption(CO_2-TPD)to find possible correlations between the physicochemical properties and catalytic activities of these catalysts.展开更多
Four polymer-supported Fe-Co tetrametallic clusters have been prepared by ion exchange and ligand exchange. Their structures were characterized by IR, UV/visible diffuse reflectance spectra and elemental analysis, and...Four polymer-supported Fe-Co tetrametallic clusters have been prepared by ion exchange and ligand exchange. Their structures were characterized by IR, UV/visible diffuse reflectance spectra and elemental analysis, and by analogy with the reference cluster PhCH_2NMe_3FeCo_3 (CO)_2 . The four heterogenous clusters were efficient catalysts in the hydroformylation of 1-hexene, turnover numbers amounted to 823 — 924 with the yield of 83.2—92.4% heptyl aldehydes and ratios of normal aldehyde to iso-aldehyde of 1.2—1.6, they are facilitated forming the normal aldehyde in comparison with the homogeneous analogue. For the polymer-supported clusters prepared by ion exchange, the polymer-cation parts had no obvious effect on the activity of the cluster anion. The polymer-phosphine substituted cluster prepared by ligand exchange was more stable than the clusters preparedby ion exchange.展开更多
MCM-41-supported bidentate phosphine rhodium complex (MCM-41-2P-RhC13) was conveniently synthesized from commercially available and cheap γ-aminopropyltriethoxysilane via immobilization on MCM-41, followed by react...MCM-41-supported bidentate phosphine rhodium complex (MCM-41-2P-RhC13) was conveniently synthesized from commercially available and cheap γ-aminopropyltriethoxysilane via immobilization on MCM-41, followed by reacting with diphenylphosphinomethanol and rhodium chloride. It was found that the title complex is a highly efficient catalyst for the hydrosilylation of olefins with triethoxysilane and can be recovered and recycled by a simple filtration of the reaction solution and used for at least 10 consecutive trials without any decreases in activity.展开更多
Metal nanoparticles(NPs) supported on porous materials have shown great advantages in many catalytic application fields. Supported metal NPs are receiving extensive attention due to their significant contribution in a...Metal nanoparticles(NPs) supported on porous materials have shown great advantages in many catalytic application fields. Supported metal NPs are receiving extensive attention due to their significant contribution in a wide range of current and future applications, and this is arguably one of the fastest growing research fields. In this review, we highlight various types of metal catalysts that possess great potential in several catalytic reactions. The major focus has been on metal oxides, nanoporous metals and metal NPs supported on metal-organic frameworks(MOFs) and zeolites. Special attention has been given to the synthesis strategies and application of the NPs supported on MOFs and zeolites, which are considered highly interesting and rapidly expanding areas in heterogeneous catalysis. Finally, the prospects of these catalysts have been included in the concluding remarks.展开更多
The structural complexity of supported metal catalysts,playing significant role in a wide range of chemical technologies,have prevented us from deeply understanding their catalytic mechanisms at atomic level.A fundame...The structural complexity of supported metal catalysts,playing significant role in a wide range of chemical technologies,have prevented us from deeply understanding their catalytic mechanisms at atomic level.A fundamental understanding of the nature of active sites and structure–performance relationship of supported metal catalysts from a comprehensive view will open up numerous new opportunities for the development of advanced catalysts to address the global challenges in energy conversion and environmental protection.This review surveys the effects of multiple factors,including the metal size,shape,support,alloy and ligand modifier,on the coordinated environment of active center and further their influence on the catalytic reactions,aiming to provide guidance for the design of industrialized heterogeneous catalysts with extraordinary performance.Subsequently,the key structure characterization techniques in determining the coordination structure of active metal sites,especially the dynamic coordination structure change under the reaction condition,are well summarized.A brief summary is finally provided together with personal perspectives on the further development in the field of heterogeneous metal catalysts.展开更多
Covalent organic frameworks (COFs), established as an emerging class of crystalline porous polymers with high surface area, structural diversity, and esignability, attract much interest and exhibit potential applica...Covalent organic frameworks (COFs), established as an emerging class of crystalline porous polymers with high surface area, structural diversity, and esignability, attract much interest and exhibit potential applications in catalysis. In this review, we summarize the use of COFs as a versatile platform to develop heterogeneous catalysts for a variety of chemical reactions. Catalytic COFs are categorized in accordance with the types of active sites, involving single functional active sites, bifunctional active sites, and metal nanoparticles (NPs) embedded in pores. Special emphasis is placed on the deliberate or incidental synthesis strategies, the stability, the heterogeneity, and the shape/size selectivity for COF catalysis. Moreover, a description of the application of COFs as photocatalysts and electrocatalysts is presented. Finally, the prospects of COFs in catalysis and remaining issues in this field are indicated.展开更多
Supported metal nanoparticles(NPs)on solid carriers are highly efficient catalysts in many industrial reactions.However,the sintering and/or leaching of metal NPs occurred under harsh reaction conditions that caused t...Supported metal nanoparticles(NPs)on solid carriers are highly efficient catalysts in many industrial reactions.However,the sintering and/or leaching of metal NPs occurred under harsh reaction conditions that caused the catalyst deactivation.Strong metal-support interactions(SMSIs)serve as an effective method to stabilize the metal NPs against sintering and leaching,which have been extensively studied.In addition to the classical route to construct SMSIs via high-temperature reduction treatments,new routes have emerged recently to extend the scope of catalysts with SMSIs and optimized their catalytic performances.In this review,we briefly summarize these routes that avoid the high-temperature reduction treatments for the construction of SMSIs.Their significant advantages in stabilizing metal NPs,modulating the geometric/electronic structure of metal species,and the mechanism on the SMSI formation are particularly discussed.Finally,the current challenges and developing trends in the construction of SMSIs for achieving more efficient catalysts are outlooked.展开更多
Liquid chemical hydrides, which store hydrogen in the form of chemical bonds, are considered one of the most promising classes of hydrogen storage materials. Their application depends heavily on the development of eff...Liquid chemical hydrides, which store hydrogen in the form of chemical bonds, are considered one of the most promising classes of hydrogen storage materials. Their application depends heavily on the development of efficient catalytic systems. Gold‐containing metal nanoparticles have exhibited excellent catalytic performance for hydrogen generation from liquid chemical hydrides. The present mini‐review focuses on recent developments in hydrogen generation from liquid chemical hydrides using gold‐nanoparticle and gold‐containing heterometallic nanoparticle catalysts.展开更多
Heterogenization can improve the thermal tolerance of olefin polymerization catalysts and result in good product morphology con-trol,which are two important parameters for industrial polyethylene production.In this wo...Heterogenization can improve the thermal tolerance of olefin polymerization catalysts and result in good product morphology con-trol,which are two important parameters for industrial polyethylene production.In this work,α-diimine nickel catalysts bearing-OH or-ONa anchoring groups were designed and prepared.The anchoring groups can enable facile heterogenization of the cata-lysts on silica.The heterogeneous catalysts demonstrated enhanced thermal stabilities,along with high catalytic activity at 120℃(up to 5.5×10^(6)g·PE·mol·Ni^(-1)·h^(-1)).Furthermore,the heterogenization process results in the improvements of many other parame-ters,including polymer morphology control,catalytic activity(up to 1.9×10^(7)g·PE·mol·Ni^(-1)·h^(-1))and polyethylene molecular weight(Mn up to 2.3×10^(6)g·mol^(-1)).More importantly,the structure and properties of the polymer products can be controlled by catalyst structures,polymerization conditions and heterogenization to achieve good mechanical properties and elasticity.展开更多
The hydrosilylation of alkenes with triethoxysilane has been achieved at 120 C in the presence of 0.01 mol%of thioetherfunctionalized MCM-41 anchored rhodium complex,affording the corresponding addition products in 68...The hydrosilylation of alkenes with triethoxysilane has been achieved at 120 C in the presence of 0.01 mol%of thioetherfunctionalized MCM-41 anchored rhodium complex,affording the corresponding addition products in 68-91%yields.This supported rhodium complex can be reused several times without noticeable loss of activity.Our system not only solves the basic problems of catalyst separation and recovery,but also avoids the use of phosphine ligands.展开更多
In our former work [Catal. Today 174 (2011) 127], 12 heterogeneous catalysts were screened for CO oxidation, and Au-ZnO/Al2O3 was chosen and optimized in terms of weight loadings of Au and ZnO. The present study fol...In our former work [Catal. Today 174 (2011) 127], 12 heterogeneous catalysts were screened for CO oxidation, and Au-ZnO/Al2O3 was chosen and optimized in terms of weight loadings of Au and ZnO. The present study follows on to consider the impact of process parameters (catalyst preparation and reaction conditions), in conjunction with catalyst composition (weight loadings of Au and ZnO, and the total weight of the catalyst), as the optimization of the process parameters simultaneously optimized the catalyst composition. The optimization target is the reactivity of this important reaction. These factors were first optimized using response surface methodology (RSM) with 25 experiments, to obtain the optimum: 100 mg of 1.0%Au-4.1%ZnO/Al2O3 catalyst with 220℃ calcination and 100℃ reduction. After optimization, the main effects and interactions of these five factors were studied using statistical sensitivity analysis (SA). Certain observations from SA were verified by reaction mechanism, reactivity test and/or characterization techniques, while others need further investigation.展开更多
基金supported by National Natural Science Foundation of China(21606222,21776270)Postdoctoral Science Foundation(2017M621170,2016M601350)~~
文摘Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneous catalysts(isolated active sites)and heterogeneous catalysts(stable and easy to separate),and are thus predicted to be able to bridge the homo-and heterogeneous catalysis.This prediction was first experimentally demonstrated in 2016.In this mini-review,we summarize the few homogeneous catalysis progresses reported recently where SACs have exhibited promising application:a)Rh/ZnO and Rh/CoO SAC have been used successfully in hydroformylation of olefin of which the activity are comparable to the homogeneous Wilkinson’s catalyst;b)a Pt/Al2O3 SAC has shown excellent performance in hydrosilylation reaction;and c)M-N-C SACs(M=Fe,Co etc.)have been applied in the activation of C–H bonds.All of these examples suggest that fabrication of suitable SACs could provide a new avenue for the heterogenization of homogeneous catalysts.These pioneering works shed new light on the recognition of single-atom catalysis in bridging the homo-and heterogeneous catalysis.
基金Supported by the National Natural Science Foundation of China(21177028 and21477022)
文摘LaPO_4 and hydroxyapatite(Ca_(10)(PO_4)_6(OH)_2)are typical metal phosphates recently found to be useful for making supported metal or metal oxide catalysts,but CePO_4(also belonging to the metal phosphate family)has been rarely used to make supported catalysts.It would be interesting to develop CePO_4-supported catalysts and explore their catalytic applications.Herein,hexagonal CePO_4 nanorods(denoted as CePO_4-H),hexagonal CePO_4 nanowires(CePO_4-HNW),monoclinic CePO_4 nanoparticles(CePO_4-M),and monoclinic CePO_4 nanowires(CePO_4-MNW)prepared by different methods were used to support gold via deposition-precipitation with urea(DPU).The gold contents of these catalysts were all around 1 wt%.The catalytic activities of these Au/CePO_4 catalysts in CO oxidation were found to follow the sequence of Au/CePO_4-MNW>Au/CePO_4-HNW> Au/CePO_4-M>Au/CePO_4-H.These catalysts were characterized by inductively coupled plasma-optical emission spectroscopy(ICP-OES),N_2 adsorption–desorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),oxygen temperature-programmed desorption(O_2-TPD),and CO_2 temperature-programmed desorption(CO_2-TPD)to find possible correlations between the physicochemical properties and catalytic activities of these catalysts.
文摘Four polymer-supported Fe-Co tetrametallic clusters have been prepared by ion exchange and ligand exchange. Their structures were characterized by IR, UV/visible diffuse reflectance spectra and elemental analysis, and by analogy with the reference cluster PhCH_2NMe_3FeCo_3 (CO)_2 . The four heterogenous clusters were efficient catalysts in the hydroformylation of 1-hexene, turnover numbers amounted to 823 — 924 with the yield of 83.2—92.4% heptyl aldehydes and ratios of normal aldehyde to iso-aldehyde of 1.2—1.6, they are facilitated forming the normal aldehyde in comparison with the homogeneous analogue. For the polymer-supported clusters prepared by ion exchange, the polymer-cation parts had no obvious effect on the activity of the cluster anion. The polymer-phosphine substituted cluster prepared by ligand exchange was more stable than the clusters preparedby ion exchange.
基金Project supportecl by the National Natural Science Foundation of China (No. 20862008) and the Natural Science Foundation of Jiangxi Province of China (No. 2008GQH0034).
文摘MCM-41-supported bidentate phosphine rhodium complex (MCM-41-2P-RhC13) was conveniently synthesized from commercially available and cheap γ-aminopropyltriethoxysilane via immobilization on MCM-41, followed by reacting with diphenylphosphinomethanol and rhodium chloride. It was found that the title complex is a highly efficient catalyst for the hydrosilylation of olefins with triethoxysilane and can be recovered and recycled by a simple filtration of the reaction solution and used for at least 10 consecutive trials without any decreases in activity.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.NRF-2015R1A4A1041036 and NRF-2018R1C1B6006076)。
文摘Metal nanoparticles(NPs) supported on porous materials have shown great advantages in many catalytic application fields. Supported metal NPs are receiving extensive attention due to their significant contribution in a wide range of current and future applications, and this is arguably one of the fastest growing research fields. In this review, we highlight various types of metal catalysts that possess great potential in several catalytic reactions. The major focus has been on metal oxides, nanoporous metals and metal NPs supported on metal-organic frameworks(MOFs) and zeolites. Special attention has been given to the synthesis strategies and application of the NPs supported on MOFs and zeolites, which are considered highly interesting and rapidly expanding areas in heterogeneous catalysis. Finally, the prospects of these catalysts have been included in the concluding remarks.
文摘The structural complexity of supported metal catalysts,playing significant role in a wide range of chemical technologies,have prevented us from deeply understanding their catalytic mechanisms at atomic level.A fundamental understanding of the nature of active sites and structure–performance relationship of supported metal catalysts from a comprehensive view will open up numerous new opportunities for the development of advanced catalysts to address the global challenges in energy conversion and environmental protection.This review surveys the effects of multiple factors,including the metal size,shape,support,alloy and ligand modifier,on the coordinated environment of active center and further their influence on the catalytic reactions,aiming to provide guidance for the design of industrialized heterogeneous catalysts with extraordinary performance.Subsequently,the key structure characterization techniques in determining the coordination structure of active metal sites,especially the dynamic coordination structure change under the reaction condition,are well summarized.A brief summary is finally provided together with personal perspectives on the further development in the field of heterogeneous metal catalysts.
基金supported by the National Natural Science Foundation of China (21473196, 21406215)the State Key Laboratory of Fine Chemicals, Dalian University of Technology (KF1415)the funding from Dalian Institute of Chemical Physics, Chinese Academy of Sciences (DICP_M201401)~~
文摘Covalent organic frameworks (COFs), established as an emerging class of crystalline porous polymers with high surface area, structural diversity, and esignability, attract much interest and exhibit potential applications in catalysis. In this review, we summarize the use of COFs as a versatile platform to develop heterogeneous catalysts for a variety of chemical reactions. Catalytic COFs are categorized in accordance with the types of active sites, involving single functional active sites, bifunctional active sites, and metal nanoparticles (NPs) embedded in pores. Special emphasis is placed on the deliberate or incidental synthesis strategies, the stability, the heterogeneity, and the shape/size selectivity for COF catalysis. Moreover, a description of the application of COFs as photocatalysts and electrocatalysts is presented. Finally, the prospects of COFs in catalysis and remaining issues in this field are indicated.
基金supported by the National Natural Science Foundation of China(U21B20101 and 21932006)China National Postdoctoral Program for Innovative Talent(BX2021256)China Postdoctoral Science Foundation(2021M700119)。
文摘Supported metal nanoparticles(NPs)on solid carriers are highly efficient catalysts in many industrial reactions.However,the sintering and/or leaching of metal NPs occurred under harsh reaction conditions that caused the catalyst deactivation.Strong metal-support interactions(SMSIs)serve as an effective method to stabilize the metal NPs against sintering and leaching,which have been extensively studied.In addition to the classical route to construct SMSIs via high-temperature reduction treatments,new routes have emerged recently to extend the scope of catalysts with SMSIs and optimized their catalytic performances.In this review,we briefly summarize these routes that avoid the high-temperature reduction treatments for the construction of SMSIs.Their significant advantages in stabilizing metal NPs,modulating the geometric/electronic structure of metal species,and the mechanism on the SMSI formation are particularly discussed.Finally,the current challenges and developing trends in the construction of SMSIs for achieving more efficient catalysts are outlooked.
基金supported by Ministry of Economy, Trade and Industry (METI)National Institute of Advanced Industrial Science Technology (AIST) and Kobe University
文摘Liquid chemical hydrides, which store hydrogen in the form of chemical bonds, are considered one of the most promising classes of hydrogen storage materials. Their application depends heavily on the development of efficient catalytic systems. Gold‐containing metal nanoparticles have exhibited excellent catalytic performance for hydrogen generation from liquid chemical hydrides. The present mini‐review focuses on recent developments in hydrogen generation from liquid chemical hydrides using gold‐nanoparticle and gold‐containing heterometallic nanoparticle catalysts.
基金supported by National Key R&D Program of China(No.2021YFA1501700)the National Natural Science Foundation of China(Nos.52025031,22001004,22261142664,U19B6001,U1904212).
文摘Heterogenization can improve the thermal tolerance of olefin polymerization catalysts and result in good product morphology con-trol,which are two important parameters for industrial polyethylene production.In this work,α-diimine nickel catalysts bearing-OH or-ONa anchoring groups were designed and prepared.The anchoring groups can enable facile heterogenization of the cata-lysts on silica.The heterogeneous catalysts demonstrated enhanced thermal stabilities,along with high catalytic activity at 120℃(up to 5.5×10^(6)g·PE·mol·Ni^(-1)·h^(-1)).Furthermore,the heterogenization process results in the improvements of many other parame-ters,including polymer morphology control,catalytic activity(up to 1.9×10^(7)g·PE·mol·Ni^(-1)·h^(-1))and polyethylene molecular weight(Mn up to 2.3×10^(6)g·mol^(-1)).More importantly,the structure and properties of the polymer products can be controlled by catalyst structures,polymerization conditions and heterogenization to achieve good mechanical properties and elasticity.
基金National Natural Science Foundation of China(No.20862008)Natural Science Foundation of Jiangxi Province(No.2008GQH0034) for financial support
文摘The hydrosilylation of alkenes with triethoxysilane has been achieved at 120 C in the presence of 0.01 mol%of thioetherfunctionalized MCM-41 anchored rhodium complex,affording the corresponding addition products in 68-91%yields.This supported rhodium complex can be reused several times without noticeable loss of activity.Our system not only solves the basic problems of catalyst separation and recovery,but also avoids the use of phosphine ligands.
基金supported by the Singapore AcRF Tier 1 Grant(RG 19/09)the A*STAR SERC Grant(102 101 0020)
文摘In our former work [Catal. Today 174 (2011) 127], 12 heterogeneous catalysts were screened for CO oxidation, and Au-ZnO/Al2O3 was chosen and optimized in terms of weight loadings of Au and ZnO. The present study follows on to consider the impact of process parameters (catalyst preparation and reaction conditions), in conjunction with catalyst composition (weight loadings of Au and ZnO, and the total weight of the catalyst), as the optimization of the process parameters simultaneously optimized the catalyst composition. The optimization target is the reactivity of this important reaction. These factors were first optimized using response surface methodology (RSM) with 25 experiments, to obtain the optimum: 100 mg of 1.0%Au-4.1%ZnO/Al2O3 catalyst with 220℃ calcination and 100℃ reduction. After optimization, the main effects and interactions of these five factors were studied using statistical sensitivity analysis (SA). Certain observations from SA were verified by reaction mechanism, reactivity test and/or characterization techniques, while others need further investigation.