The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are ...The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are located in the Kwademen-Baguiomo shear zone. This mineralization, located only a few kilometers from the Kwademen gold deposit, is uncharacterized and, together with the latter, could constitute a gold potential capable of being economically exploitable. It is in this sense that this work is carried out with a view to characterizing the gold mineralization of the Baguiomo gold panning site. To carry out this work, we have made direct field measurements, combined with microstructures, and combined all this with data from geochemical rock analysis of the basalts that are the main host formations. Geochemical data show that tholeitic basalts formed from a mantle plume that was emplaced in an oceanic plateau context. Calc-alkaline basalts and andesites are comparable to Paleoproterozoic tholeitic basalts (PTH3), which are slightly enriched in light rare earths. Fertility tests show that these basalts concentrate between 3 and 6 ppb of gold at the time of accretion, which is sufficient for remobilization of this primary gold during the Eburnian orogeny to yield a deposit of around 4 - 5 Moz. Gold mineralization is associated with pyrite crystals when the latter are disseminated in the rock mass, whereas it is associated with hematite in quartz veins concordant with S1 shear deformation. It is mainly the pyrite crystals in the pressure shadows that contain the gold grains, whose development would be synchronous with micro-shear zone reactivation during the first phase of D1<sub>B</sub> deformation. The second phase of D2<sub>B</sub> deformation, which is a crenulation or fracture schistosity, does not significantly affect the shear deformation that controls mineralization.展开更多
The Douta permit of African Star Resources/Thor Explorations, located in the southeast of Senegal, in the Kédougou-Kéniéba Inlier (western part of the West African Craton), is dominated to the East by m...The Douta permit of African Star Resources/Thor Explorations, located in the southeast of Senegal, in the Kédougou-Kéniéba Inlier (western part of the West African Craton), is dominated to the East by metasedimentary formations such as greywackes, shales, graphitic shales, quartzites, cherts, claystones and breccias characteristic of the Dialé-Daléma basin. To the West, the mafic formations of the Mako volcanic belt are the most common. Metasedimentary rocks are associated with metavolcanosedimentary terms found at the contact zones between the two (2) Birimian groups. These different geological formations are cut by mafic dolerite and gabbro sills and/or dykes, as well as quartz and microgranite veins. The Douta gold project is crossed from North to South by the MTZ (Main Transcurrent Zone), generally oriented NE-SW and becoming N-S towards the North. The permit is characterized by several shear corridors. The rocks are affected by brittle, brittle-ductile to ductile deformations. The gold mineralization is hosted by a NE-trending shear corridor called the Makosa corridor (Makosa shear zone), therefore sub-parallel to the MTZ. It has a subvertical dip (75˚ to 85˚ to the NW). It is associated with a hydrothermal phase characterized by quartz-sericite-epidote-fine, disseminated pyrite and arsenopyrite ± albite ± chlorite paragenesis. These minerals testify to the existence of a low degree of metamorphism (greenschist facies, epizonal domain) in the area. However, metamorphism reaches amphibolite facies in some places, particularly in the vicinity of intrusive bodies, with the presence of hornblende (amphiboles) and plagioclase. The gold mineralization is mainly hosted by two (2) metasedimentary lithological units: meta-greywackes and shales.展开更多
The Boulon Djounga eastern perimeter is part of the Tiawa operating permit of the Société des Mines du Liptako (SML), located in the central southwestern part of Liptako (Niger). In this study, we used field...The Boulon Djounga eastern perimeter is part of the Tiawa operating permit of the Société des Mines du Liptako (SML), located in the central southwestern part of Liptako (Niger). In this study, we used field data, Reverse Circulation (RC) surveys and chemical analyzes of gold to determine the characteristics of gold and its mineralization style. The eastern perimeter of Boulon Djounga is represented by a succession of metabasalts and metasediments both intersected by intrusions of quartz and dolerite dykes, and covered by sandstone and clayey rocks. Gold is present in low contents (0.00 - 0.30 ppm) in the sedimentary cover and in medium (0.30 - 1.00 ppm) or high contents (1.00 - 4.534 ppm) in the metasediments, and in the gray quartz veins and locally in the volcanics. It exists in a disseminated state or in a concentrated state in the surrounding areas in the form of discrete grains associated with sulphurous minerals (pyrite: FeS<sub>2</sub>, chalcopyrite: CuFeS<sub>2</sub> or arsenopyrite: FeAsS). The presence of gold in the quartz veins, and the NE-SW and NW-SE orientations of the ore bodies suggest that the eastern Boulon Djounga gold mineralization would be established during a late magmatic extensive phase.展开更多
The Intiédougou located in the Houndé Birimian greenstone belt has been the subject of several mining and geoscience studies that have led to the discovery of mineralized gold targets. One of these mineraliz...The Intiédougou located in the Houndé Birimian greenstone belt has been the subject of several mining and geoscience studies that have led to the discovery of mineralized gold targets. One of these mineralized targets has prompted work that raises the issue of control factors for the gold mineralization of the prospect. The methodology used in this study combines a study of core drill hole data located in the area and laboratory studies. The Intiédougou sector is based on andesito-basaltic, andesitic interstratified volcanoclastite rocks and Tarkwaïen type detrital sedimentary rocks caught in a vice in the volcano-sedimentary unit. Lithostructural analysis of the sector shows that the subvolcanic rocks bearing gold mineralization are subjected to heterogeneous ductile to brittle deformations and affected by hydrothermalism evolving at stages marked by large fissure fillings. These hydrothermal phases evolve in the zones of expansion created by the brittle deformations that have contributed to the deposits of different types of gold-enriched sulphides. These different phases of hydrothermal destabilization generally of low degree accompany the tardi to post-eburnean brittle tectonics. This deformation system is favorable to the establishment of gold mineralization in the form of vein bodies. The overimposition of deformed and altered areas suggests a genetic relationship between deformation and hydrothermal activity. In conclusion, the mineralization of Intiédougou in vein styles, set up in a volcanic arc environment with a paragenesis of gold-pyrite deposit ± chalcopyrite would be controlled by the structural aspect and accompanied by hydrothermal alteration.展开更多
The characterization of the relationships between mineralization and hydrothermal alteration is an essential element in understanding gold deposits. In south-west Burkina Faso, the Napélépéra mineralisa...The characterization of the relationships between mineralization and hydrothermal alteration is an essential element in understanding gold deposits. In south-west Burkina Faso, the Napélépéra mineralisation, the mobility of chemical elements and alteration-mineralization relationships were studied by means of selected core drilling and geochemical analyses using ICP-MS (Inductively Coupled Plasma Mass Spectrometry) and ICP-AES (Inductively coupled plasma atomic emission spectroscopy). The mineralised granodiorite is grey porphyroid with quartz, plagioclase, biotite and amphibole. It is metaluminous and located in the tholeiitic series. The Na<sub>2</sub>O + CaO versus Fe<sub>2</sub>O<sub>3</sub> + MgO alteration diagram divides the samples according to alteration dominance. Chloritisation and carbonation are the main alterations. There is a relationship between gold mineralisation at Napélépéra and alteration, and the paragenesis of gold + pyrite ± carbonate ± silica ± sericite is the main characteristic. Carbonation is the result of fluid input in the shear corridor of the mineralised zone. The mass balance of comparative metals in the proximal and distal zones of the mineralisation shows the absence of metals, while As, Hg, Ag and Bi are strongly enriched from the distal zone to the mineralised zone. The oxides associated with the mineralisation are mainly NaO, SrO and CaO.展开更多
The microscopy and scanning electronic microscopy (SEM) were used to study the gold occurrence of Jiaojia gold mine, Shandong province. The results show that the gold-bearing minerals are composed of pyrite, chalcop...The microscopy and scanning electronic microscopy (SEM) were used to study the gold occurrence of Jiaojia gold mine, Shandong province. The results show that the gold-bearing minerals are composed of pyrite, chalcopyrite, gangue, sphalerite and galena. 77.12% of gold minerals are the sulphides and 22.88% are the gangues. The gold occurrence is composed of 60.28% fissure gold, 21.63% inclusion gold and 18.09% crystal fractured gold. The morphology of gold mineral is composed of sphere, triangle, rectangle, strip and erose. The Jiaojia gold mineral owns large grain size range from 3-5 μm to 100 μm. 1.5% of gold grains is more than 0.104 mm, 5.26% is 0.074-0.104 mm, 23.31% is 0.043-0.074 mm, 3.76% is 0.043-0.037 mm and 64.29% is less than 0.037 mm. The occurrence of gold mineral is composed of native gold, electrum, native silver, iron-bearing native silver, goldcuprid and acanthite. Electrum is the most important mineral, accounting for 71.56%. The average quality is 641.26‰ for gold and silver mineral.展开更多
Red clay type gold deposits,located in the south of China,are situated not only in orogenic belts,but also in inner cratons,where climate is tropical-subtropical with clear arid and humid.The lateritic weathering crus...Red clay type gold deposits,located in the south of China,are situated not only in orogenic belts,but also in inner cratons,where climate is tropical-subtropical with clear arid and humid.The lateritic weathering crust often can be divided into five zones,including topsoil,siliceous duricrust zone,multi-color zone(or red clay zone in some deposits),pallid zone and saprolite zone from surface to the base rock,several of which are absent in some deposits.The base rocks are composed mainly of carbonate rocks with minor clastic rocks,intermediate-basic volcanic rocks and intermediate-acid and alkalic intrusions.The orebodies are mainly located in the multi-color zone with part of them in the pallid and saprolite zones.The ore sources include orebodies of Carlin-type gold deposits and porphyry gold deposits,as well as gold-rich base rocks.The red clay type gold deposits experienced early-stage endogenic gold mineralization and laterization during the Tertiary and Quaternary.The areas with endogenic gold deposits,especially Carlin-type gold deposits and porphyry gold deposits in karst depressions on the plateau,structual erosional platforms in the middle-lower mountains,and intermountain basins in southern China are well worth studying to trace red clay type gold deposits.展开更多
The Nianzha gold deposit, located in the central section of the Indus-Yarlung Tsangpo suture (IYS) zone in southern Tibet, is a large gold deposit (Au reserves of 25 tons with average grade of 3.08 g/t) controlled...The Nianzha gold deposit, located in the central section of the Indus-Yarlung Tsangpo suture (IYS) zone in southern Tibet, is a large gold deposit (Au reserves of 25 tons with average grade of 3.08 g/t) controlled by a E-W striking fault that developed during the main stage of Indo-Asian collision (-65-41 Ma). The main orebody is 1760 m long and 5.15 m thick, and occurs in a fracture zone bordered by Cretaceous diorite in the hanging wall to the north and the Renbu tectonic melange in the footwall to the south. High-grade mineralization occurs in a fracture zone between diorite and ultramafic rock in the Renbu tectonic melange. The wall-rock alteration is characterized by silicification in the fracture zone, serpentinization and the formation of talc and magnesite in the uitramafic unit, and chloritization and the formation of epidote and calcite in diorite. Quartz veins associated with Au mineralization can be divided into three stages. Fluid inclusion data indicate that the deposit formed from H20-NaCl-organic gas fluids that homogenize at temperatures of 203℃-347℃ and have salinities of 0.35wt%-17.17wt% NaCI equivalent. The quartz veins yield δ18Ofluid values of 0.15‰-10.45‰, low δDv-SMow values (-173%o to -96%o), and the δ13C values of-17.6‰ to -4.7‰, indicating the ore-forming fluids were a mix of metamorphic and sedimentary orogenic fluids with the addition of some meteoric and mantle-derived fluids. The pyrite within the diorite has δ34SV-CDT values of -2.9‰-1.9‰(average -1.1‰), 206pb/204pb values of 18.47- 18.64, 207pb/204pb values of 15.64-15.74, and 208pb/204pb values of 38.71-39.27, all of which are indicative of the derivation of S and other ore-forming elements from deep in the mantle. The presence of the Nianzha, Bangbu, and Mayum gold deposits within the IYS zone indicates that this area is highly prospective for large orogenic gold deposits. We identified three types of mineralization within the IYS, namely Bangbu-type accretionary, Mayum-type microcontinent, and Nianzha-type ophiolite-associated orogenic Au deposits. The three types formed at different depths in an aeeretionary orogenic tectonic setting. The Bangbu type was formed at the deepest level and the Nianzha type at the shallowest.展开更多
The Central Asian Orogenic Belt,as one of world-class gold economic belts,preserves a number of giant,large black shale-hosted gold deposits,while it is still debated for origin of sulfides and gold mainly due to lack...The Central Asian Orogenic Belt,as one of world-class gold economic belts,preserves a number of giant,large black shale-hosted gold deposits,while it is still debated for origin of sulfides and gold mainly due to lack of identification for multiple stages of sulfides.The Haoyaoerhudong gold deposit is hosted in a sequence of Mesoproterozoic carbonaceous and pyritic slate,phyllite,and schist that form a tight syncline along the north margin of the North China Craton.Detailed petrography of the host rocks and mineralization have defined five stages of pyrites.The earliest form of pyrite(Py_(1))occurs as fine-grained dispersed pyrite in black carbonaceous slate and medium-to coarse-grained disseminated pyrite in pyrite-rich layers,contains relative low gold and high arsenic content,indicating a syn-sedimentary or diagenetic in origin.Stage Ⅱ pyrite(Py_(2))occurs with garnet and quartz inclusions and Py_(3) occurs as pyrite veins,contains higher gold and lower As content,and are interpreted to have formed from the dissolution-reprecipitation of Py_(1) during the peak metamorphism or post-peak metamorphism.Stage Ⅳ pyrite(Py_(4))from the pyrite-quartz veins crosscut the metamorphic garnet,contains the highest gold concentrations and other trace elements,and is considered to have formed post-peak metamorphism.Abundant native gold,electrum,and maldonite occur as inclusions within Py_(4) and monazite and in fractures that crosscut garnet.While,Py_(5) with typical remobilized feature is thought to be a product of melting of former pyrites(Py_(1) to Py_(4))triggered by the large-scale Hercynian magmatism.The sedimentary/diagenetic Py_(1) have δ^(34)S values that range from +12.4‰to +16.2‰.Later generations of sulfides,including Py_(2) to Py_(5),and Ccp_(2) to Ccp_(3),have δ^(34)S values from +9.5‰to +12.7‰.Monazite with maldonite inclusions from quartz-pyrite veins yielded an intercept age of 341.3±6.6 Ma,while coarse grained monazite associated biotite along fractures in the reefs yielded an intercept age of 254.6±8.2 Ma.The paragenetic,textural,chemical,and isotopic data suggest three distinct gold producing episodes at Haoyaoerhudong gold deposit.Gold and arsenic were clearly initially concentrated in organic muds,and enriched along the structures of diagenetic arsenic-rich pyrite.Subsequently,accompanying metamorphism and deformation,gold was liberated from the dissolution of diagenetic pyrites to form the pyrite veins.Finally,accompanying transformation of pyrite into pyrrhotite,gold was released into the metamorphic fluids to become concentrated as native gold,electrum,and maldonite in pyrite-quart veins.Monazite with age of 341 Ma from quartz-pyrite veins suggests that the third major gold mineralizing event in Haoyaoerhudong occurred before the Hercynian magmatism,suggesting that the Haoyaoerhudong deposit is a typical orogenic gold deposit rather than intrusion-related deposit.展开更多
The Penjom Gold Mine is located 30 km from the Bentong-Raub Suture at the western boundary of the Central Belt in Peninsular Malaysia. Gold mineralization hosted within the vein system is associated with pyrite, arsen...The Penjom Gold Mine is located 30 km from the Bentong-Raub Suture at the western boundary of the Central Belt in Peninsular Malaysia. Gold mineralization hosted within the vein system is associated with pyrite, arsenopyrite, and minor base metals including galena. Trace element and lead isotope analysis was undertaken on nine samples that represent two stages of galena formed during two tectonic events. Both the Pb isotopes and the trace elements show that the first stage galena within the mineralized areas at the footwall has different geochemical characteristics compared with galena in non mineralized areas in the hanging wall, suggesting that galena crystallized from two different ore fluids and probably at two different times. Higher Te, Se and Bi in the galena from the mineralized area may indicate hydrothermal fluids that migrate through the structural conduit and leached out the metal along the pathway that consist of dominant carbonaceous unit. The Pb isotopic ratio composition are transitional between the bulk crustal growth and an upper crustal growth curve, indicating that derivation was from arc rocks associated with continental crust or a crustal source that includes arc volcanic and old continental sedimentary rocks.展开更多
This paper seeks to identify macroscopic metallogenic mechanisms of various mineral deposits by studying microscopic typomorphic characteristics of typical minerals associated with the deposits and to reveal the mecha...This paper seeks to identify macroscopic metallogenic mechanisms of various mineral deposits by studying microscopic typomorphic characteristics of typical minerals associated with the deposits and to reveal the mechanism of lattice gold in detail by studying both physical and chemical characteristics of quartz from representative gold deposits in the North China Platform.As part of their extensive research,the authors examine the relationship between trace elements with wall rock,the ore-forming media,and gold immigration of various types of gold deposits,including their salinity,type,temperature.These are key factors to revealing the mineralization mechanism,and indicators for mineral prospecting,exploration,mining,and metallurgical technology.In order to address the questions posed,the following methods were used:field investigations of geology and sampling of the representative gold deposits,physical study and chemical analysis of quartz including,but not limited to,fluid inclusions as well as their compositions and trace elements in quartz,the unit cell parameters,electron paramagnetic resonance spectrum(EPR),and infrared spectroscopic analysis(ISA).As a result of this study,the authors observe the following key findings:unit cell parameters of quartz vary with their contents of foreign elements including gold,paragenetic stage,wall rock type,and other factors;the higher the forming temperature and the lower the gold content in quartz,the smaller the unit cell parameters,and vice versa.Additionally,the EPR absorption lines resulted from the O–Al defect center.The density of these types of hole centers increases and the EPR signal strengthens when the temperature decreases.Based on the findings,the authors conclude that lattice gold exists in quartz.Gold,in the form of Au^(+)and/or Au^(3+),entering quartz and producing an electron–hole center,namely,the O-Au hole center,makes the center produce spin resonance absorption and results in the EPR absorption peak#I.Both unit cell parameters and EPR of quartz can potentially be used in mineral prospecting,relative ore-forming temperature determination,and grade control during mining.展开更多
The Um Rus tonalite-granodiorite intrusion(~6 km2)occurs at the eastern end of the Neoproterozoic,ENE-trending Wadi Muba rak shear belt in the Central Eastern Desert of Egypt.Gold-bearing quartz veins hosted by the Um...The Um Rus tonalite-granodiorite intrusion(~6 km2)occurs at the eastern end of the Neoproterozoic,ENE-trending Wadi Muba rak shear belt in the Central Eastern Desert of Egypt.Gold-bearing quartz veins hosted by the Um Rus intrusion were mined intermittently,and initially by the ancient Egyptians and until the early 1900 s.The relationship between the gold mineralization,host intrusion,and regional structures has always been unclear.We present new geochemical and geochronological data that help to define the tectonic environment and age of the Um Rus intrusion.In addition,field studies are integrated with EPMA and LA-ICP-MS data for gold-associated sulfides to better understand the formation and distribution of gold mineralization.The bulk-rock geochemical data of fresh host rocks indicate a calc-alkaline,metaluminous to mildly peraluminous,I-type granite signature.Their trace element composition reflects a tectonic setting intermediate between subduction-related and within-plate environments,presumably transitional between syn-and post-collisional stages.The crystallization age of the Um Rus intrusion was determined by in situ SHRIMP 206 Pb/238 U and 207Pb/235U measurements on accessory monazite grains.The resultant monazite U-Pb weighted mean age(643±9 Ma;MSWD 1.8)roughly overlaps existing geochronological data for similar granitic intrusions that are confined to major shear systems and are locally associated with gold mineralization in the Central Eastrn Desert(e.g.,Fawakhir and Hangaliya).This age is also consistent with magmatism recognized as concomitant to transpressional tectonics(D2:~650 Ma)during the evolution of the Wadi Mubark belt.Formation of the gold-bearing quartz veins in NNE-SSW and N-S striking fault segments was likely linked to the change from transpressional to transtensional tectonics and terrane exhumation(D3:620-580 Ma).The development of N-S throughgoing fault arrays and dike swarms(~595 Ma)led to heterogeneous deformation and recrystallization of the mineralized quartz veins.Ore minerals in the auriferous quartz veins include ubiquitous pyrite and arsenopyrite,with less abundant pyrrhotite,chalcopyrite,sphalerite,and galena.Uncommon pentlandite,gersdorffite,and cobaltite inclusions hosted in quartz veins with meladiorite slivers are interpreted as pre-ore sulfide phases.The gold-sulfide paragenesis encompasses an early pyrite-arsenopyrite±loellingite assemblage,a transitional pyrite-arsenopyrite assemblage,and a late pyrrhotite-chalcopyrite-sphalerite±galena assemblage.Free-milling gold/electrum grains(10 sμm-long)are scattered in extensively deformed vein quartz and in and adjacent to sulfide grains.Marcasite,malachite,and nodular goethite are authigenic alteration phases after pyrrhotite,chalcopyrite,and pyrite and arsenopyrite,respectively.A combined ore petrography,EPMA,and LA-ICP-MS study distinguishes morphological and compositional differences in the early and transitional pyrites(PyⅠ,PyⅡ)and arsenopyrite(ApyⅠ,ApyⅡ).Py I forms uncommon small euhedral inclusions in later PyⅡand Apy II.PyⅡforms large subhedral crystals with porous inner zones and massive outer zones,separated by narrow As-rich irregular mantles.The Fe and As contents in PyⅡare variable,and the LA-ICP-MS analysis shows erratic concentrations of Au(<1 to 177 ppm)and other trace elements(e.g.,Ag,Te,and Sb)in the porous inner zones,most likely related to discrete sub-microscopic sulfide inclusions.The outer massive zones have a rather homogenous composition,with consistently lower abundances of base metals and Au(mean 1.28 ppm).The early arsenopyrite(Apy I)forms fine-grained euhedral crystals enriched in Au(mean 17.7 ppm)and many other trace elements(i.e.,Ni,Co,Se,Ag,Sb,Te,Hg,and Bi).On the other hand,ApyⅡoccurs as coarsegrained subhedral crystals with lower and less variable concentrations of Au(mean 4 ppm).Elevated concentrations of Au(max.327 ppm)and other trace elements are measured in fragmented and aggregated pyrite and arsenopyrite grains,whereas the undeformed intact zones of the same grains are poor in all trace elements.The occurrence of gold/electrum as secondary inclusions in deformed pyrite and arsenopyrite crystals indicates that gold introduction was relatively late in the paragenesis.The LAICP-MS results are consistent with gold redistribution by the N-S though-going faults/dikes overprinted the earlier NNW-SSE quartz veins in the southeastern part of the intrusion,where the underground mining is concentrated.Formation of the Um Rus intrusion and gold-bearing quartz veins can be related to the evolution of the Wadi Mubarak shear belt,where the granitic intrusion formed during or just subsequent to D2 and provided dilatation spaces for gold-quartz vein deposition when deformed by D3 structures.展开更多
The ca. 126e120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as&gt;3000 t Au. The vein and disseminated ores are hosted by N...The ca. 126e120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as&gt;3000 t Au. The vein and disseminated ores are hosted by NE-to NNE-trending brittle normal faults that parallel the margins of ca. 165e150 Ma, deeply emplaced, lower crustal melt granites. The deposits are sited along the faults for many tens of kilometers and the larger orebodies are associated with dilatational jogs. Country rocks to the granites are Pre-cambrian high-grade metamorphic rocks located on both sides of a Triassic suture between the North and South China blocks. During early Mesozoic convergent deformation, the ore-hosting structures developed as ductile thrust faults that were subsequently reactivated during Early Cretaceous "Yan-shanian"intracontinental extensional deformation and associated gold formation. 〈br〉 Classification of the gold deposits remains problematic. Many features resemble those typical of orogenic Au including the linear structural distribution of the deposits, mineralization style, ore and alteration assemblages, and ore fluid chemistry. However, Phanerozoic orogenic Au deposits are formed by prograde metamorphism of accreted oceanic rocks in Cordilleran-style orogens. The Jiaodong de-posits, in contrast, formed within two Precambrian blocks approximately 2 billion years after devolati-lization of the country rocks, and thus require a model that involves alternative fluid and metal sources for the ores. A widespread suite of ca. 130e123 Ma granodiorites overlaps temporally with the ores, but shows a poor spatial association with the deposits. Furthermore, the deposit distribution and mineral-ization style is atypical of ores formed from nearby magmas. The ore concentration requires fluid focusing during some type of sub-crustal thermal event, which could be broadly related to a combination of coeval lithospheric thinning, asthenospheric upwelling, paleo-Pacific plate subduction, and seismicity along the continental-scale Tan-Lu fault. Possible ore genesis scenarios include those where ore fluids were produced directly by the metamorphism of oceanic lithosphere and overlying sediment on the subducting paleo-Pacific slab, or by devolatilization of an enriched mantle wedge above the slab. Both the sulfur and gold could be sourced from either the oceanic sediments or the serpentinized mantle. A better understanding of the architecture of the paleo-Pacific slab during Early Cretaceous below the eastern margin of China is essential to determination of the validity of possible models.展开更多
Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing sharply, and the economic situation of the industry is one of low base rate. The current hierarchical str...Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing sharply, and the economic situation of the industry is one of low base rate. The current hierarchical structure of the exploration and mining industry makes this situation difficult to redress. Economic geologists can do little to influence the required changes to the overall structure and philosophy of an industry driven by business rather than geological principles, However, it should be possible to follow the lead of the oil industry and improve the success rate of greenfield exploration, necessary for the next group of lower-exploration-spend significant mineral deposit discoveries. Here we promote the concept that mineral explorers need to carefully consider the scale at which their exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of terrane to province to district scale, rather than deposit scale, where most current economic geology research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich systems are viewed at the deposit scale, they appear quite different in terms of conventionally adop- ted research parameters. However, recent models for these deposit styles show increasingly similar source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It is only by assessing individual targets in their tectonic context that they can be more reliably ranked in terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and such exploration could lead to incidental discovery of major deposits of other metals sited along the same tectonic boundaries.展开更多
The Central Africa Fold Belt(CAFB)is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years.However,favorable areas for gold exploration are poorly known.This paper presents(1)th...The Central Africa Fold Belt(CAFB)is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years.However,favorable areas for gold exploration are poorly known.This paper presents(1)the kinematics of the brittle deformation in the Kékem area in the SW portion of the Central Cameroon Shear Zone and(2)constraints gold mineralization events with respect to the collisional evolution of the CAFB.The authors interpret that the conjugate ENE to E and NNW to NW trending lineament corresponds to the synthetic(R)and the antithetic(R’)shears,which accompanied the dextral slip along the NE to ENE striking shear.The latter coincides with the last 570-552 Ma D3 dextral simple shear-dominated transpression,which is parallel to the BétaréOya shear zone hosting gold deposits.Gold mineralizations,which mainly occurred during the last dextral shearing,are disseminated within quartz veins associated to Riedel’s previous structures reactivated due to late collisional activities of the CAFB as brittle deformation.Gold mineralizations occurred mainly during the 570-552 Ma D3 event.The reactivation,which might be due to dextral simple shear during mylonitzation,plausibly remobilized the early gold deposits hosted in syn-compressional rocks and/or possibly focused deep-sourced fluid mixed with those released by dehydration.Therefore,the Central Cameroon Shear Zone where Kékem is located,and which shows similar petrographical and structural features to those controling Batouri gold district,is a target area for gold exploration in Cameroon.展开更多
Haigou gold deposit is a typical orogenic gold deposit. There are a reasonable amount of fluid inclusions in the gold deposit,including three types: CO2-H2O-Na Cl inclusions,pure CO2 inclusions and Na Cl-H2 O inclusio...Haigou gold deposit is a typical orogenic gold deposit. There are a reasonable amount of fluid inclusions in the gold deposit,including three types: CO2-H2O-Na Cl inclusions,pure CO2 inclusions and Na Cl-H2 O inclusions,of which most of them are CO2-bearing inclusions. The fluid salinity is 1. 43%- 9. 08%,mainly concentrated in the range of 4. 69%- 5. 41%,the density of CO2 is 0. 69- 0. 80 g / cm3,indicating that the mineralization fluid is low-medium salinity and low density fluid. A series of studies on gold-bearing quartz vein and fluid inclusions show that there exists a positive correlation between the degree of the gold mi-neralization and the amount of CO2 in the inclusions,which means the more CO2-bearing inclusions there are,the higher the content of gold is. CO2 is mainly derived from mantle fluid,and the ore-forming fluid should be derived from mantle fluid and the crust shallow fluid. The conclusions have important denotative meaning on the metallogenic mechanism of orogenic gold deposit and the deep prospecting on metal deposit.展开更多
The gold mineralization of the Tondabo prospect, located in the northern part of the Oumé-Toumodi-Fettêkro greenstone belt, is mainly hosted in the rhyodacite and to a lesser extent in the mafic volcanics (v...The gold mineralization of the Tondabo prospect, located in the northern part of the Oumé-Toumodi-Fettêkro greenstone belt, is mainly hosted in the rhyodacite and to a lesser extent in the mafic volcanics (volcanic lavas and volcanoclastites). These rocks were affected by a hydrothermal alteration marked by quartz veins and veinlets associated with crystals of carbonates, sericite, epidote and sulfides. This hydrothermal alteration induced a pervasive alteration of the surrounding bodies with silicification, chloritization, carbonation and sericitization of the feldspars. The metalliferous paragenesis contains an abundant pyrite, with rare pyrrhotite and chalcopyrite. This mineralization indicates that the Tondabo gold prospect exhibits lithological control. The mineralized deposits are generally affected by a S1 schistosity oriented mainly N000-010° and minority N040-050° with a general dip of 60°-80°to the West;however with rare N-S orientations with a dip of 60°-80° to the East. The drilling intervals show that the highest gold contents are linked to the quartz-carbonates veins and veinlets, which are located in the highly deformed zones, characterizing local shear zones.展开更多
The Wangershan gold deposit and spatially related Shangzhuang granite, eastern Shandong Province, have been precisely dated by 40 Ar/ 39 Ar laser incremental heating technique. Magmatic hornblende and biotite, ...The Wangershan gold deposit and spatially related Shangzhuang granite, eastern Shandong Province, have been precisely dated by 40 Ar/ 39 Ar laser incremental heating technique. Magmatic hornblende and biotite, collected from the Shangzhuang granites, yielded well-defined and reproducible plateau ages at 128.1-127.5 and 124.4-124.1 Ma (2 σ ), measuring the cooling ages of the intrusion at ca. 500 ℃ and 300-350 ℃, respectively. Hydrothermal sericite extracted from auriferous vein gave high-quality plateau ages between (120.6±0.3) Ma and (120.0±0.4) Ma (2 σ ). Given the similarity of the closure temperature for argon diffusion (300-350 ℃) in the sericite mineral to the homogenization temperature of primary fluid inclusions in the quartz from gold ores, and the intergrowth of sericite with native gold, present 40 Ar/ 39 Ar sericite ages can be reliably interpreted in terms of the mineralization age for the Wangershan deposit. 40 Ar/ 39 Ar hornblende and biotite ages permit an estimate for the cooling rate of the Shangzhuang granite at about 50 ℃/Ma. There are abundant intermediate-mafic dikes in most gold camps of eastern Shandong, whose ages of formation have been previously constrained mainly at 121-119 Ma. The temporal association between the Shangzhuang granite, the Wangershan gold deposit, and the widespread dikes confirms that intrusive activity, gold mineralization, and dike emplacement in this region were broadly coeval, reflecting significant continental lithosphere thinning and resulting crustal extension of Early Cretaceous in eastern China.展开更多
High-K granites dominate the rock units in the Bakoshi and Gadanya areas located in the northwestern Nigerian subshield,part of the Trans-Saharan Belt,West Africa.In this contribution,the LA-ICP-MS zircon trace elemen...High-K granites dominate the rock units in the Bakoshi and Gadanya areas located in the northwestern Nigerian subshield,part of the Trans-Saharan Belt,West Africa.In this contribution,the LA-ICP-MS zircon trace element revealed the fertility of magma responsible for the high-K granites that hosts the Bakoshi–Gadanya gold mineralization.Two likely metallogenic granites types are 1)Gadanya alkali granite,with high Ce^(4+)/Ce^(3+)(mean 1485)and limited range of Eu anomalies may likely be associated with the gold mineralization,and 2)Bakoshi porphyritic granite,Jaulere biotite granite,Shanono coarsegrained granite,and Yettiti granite,all have low Ce^(4+)/Ce^(3+) ratios(mean\100,except second Bakoshi granite D2-1)with wider ranges of Eu/Eu^(*) values,thus are considered reduced granites.These reduced granites have oxygen fugacity values and Eu anomalies comparable to reduced granites associated with tin belts in Myanmar and Zaaiplaats granites in Bushveld Complex,South Africa.Ti-inZircon thermometric study revealed two thermal regimes during the crystallization of the Bakoshi–Gadanya granites:the high temperature(746–724℃):Shanono coarsegrained granite,Bakoshi granite D2-1,and Jaulere biotite granite;and relatively low temperature(705–653℃):Bakoshi porphyritic granite D1-1,Yettiti medium-grained granite,and Gadanya alkali granite.Zircon trace elements including U,Yb,Y,Nb,and Sc ratios constraint the magma source of Bakoshi–Gadanya granites to an enriched mantle metasomatized during the subduction process before its melting.Except for Gadanya alkali granite,fractionation of titanite and apatite dominate the magma evolution with limited amphibole fractionation.Melt that crystallized Gadanya alkali granite is rather saturated in zircon without accessory titanite or apatite.展开更多
According to the differences in ore-controlling structural systems and the characteristics of host rocks, textures and structures of ores and mineral associations of ores, quartz vein-type gold deposits in the Rushan ...According to the differences in ore-controlling structural systems and the characteristics of host rocks, textures and structures of ores and mineral associations of ores, quartz vein-type gold deposits in the Rushan area can be divided into the Rushan and Tongling styles. Rushan style gold deposits, occurring in the Kunyushan complex, include Rushan, Tangjiagou and Tongxishan gold mines. They are distributed along four NNE-trending and sinistral, compresso-shear faults with a right stepping array. A prominent characteristic of the gold mineralization is that the orebodies in neighbouring gold deposits distributed in a single ore-controlling fault zone take opposite pitches. Study of the locating structures of the quartz vein gold deposits shows that the Rushan-style gold deposits are characterized by NNE and NE zoning. Therefore, the intersections of the NE direction of the known gold deposit and the neighbouring NNE-trending fault zones are favourable for looking for gold deposits, and the ends of the curving segments of sinistral and right-stepping faults are favourable for looking for large gold deposits. Tongling-style gold deposits occur in the Sanfosan porphyritic monzonitic granite. Emplacement of gold deposits is controlled by arcuate and radiate structures formed during the intrusion of the Sanfoshan porphyritic monzonitic granite; the radiate faults controlled the distribution of orebodies and the arcuate faults controlled the pitch of the orebodies.展开更多
文摘The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are located in the Kwademen-Baguiomo shear zone. This mineralization, located only a few kilometers from the Kwademen gold deposit, is uncharacterized and, together with the latter, could constitute a gold potential capable of being economically exploitable. It is in this sense that this work is carried out with a view to characterizing the gold mineralization of the Baguiomo gold panning site. To carry out this work, we have made direct field measurements, combined with microstructures, and combined all this with data from geochemical rock analysis of the basalts that are the main host formations. Geochemical data show that tholeitic basalts formed from a mantle plume that was emplaced in an oceanic plateau context. Calc-alkaline basalts and andesites are comparable to Paleoproterozoic tholeitic basalts (PTH3), which are slightly enriched in light rare earths. Fertility tests show that these basalts concentrate between 3 and 6 ppb of gold at the time of accretion, which is sufficient for remobilization of this primary gold during the Eburnian orogeny to yield a deposit of around 4 - 5 Moz. Gold mineralization is associated with pyrite crystals when the latter are disseminated in the rock mass, whereas it is associated with hematite in quartz veins concordant with S1 shear deformation. It is mainly the pyrite crystals in the pressure shadows that contain the gold grains, whose development would be synchronous with micro-shear zone reactivation during the first phase of D1<sub>B</sub> deformation. The second phase of D2<sub>B</sub> deformation, which is a crenulation or fracture schistosity, does not significantly affect the shear deformation that controls mineralization.
文摘The Douta permit of African Star Resources/Thor Explorations, located in the southeast of Senegal, in the Kédougou-Kéniéba Inlier (western part of the West African Craton), is dominated to the East by metasedimentary formations such as greywackes, shales, graphitic shales, quartzites, cherts, claystones and breccias characteristic of the Dialé-Daléma basin. To the West, the mafic formations of the Mako volcanic belt are the most common. Metasedimentary rocks are associated with metavolcanosedimentary terms found at the contact zones between the two (2) Birimian groups. These different geological formations are cut by mafic dolerite and gabbro sills and/or dykes, as well as quartz and microgranite veins. The Douta gold project is crossed from North to South by the MTZ (Main Transcurrent Zone), generally oriented NE-SW and becoming N-S towards the North. The permit is characterized by several shear corridors. The rocks are affected by brittle, brittle-ductile to ductile deformations. The gold mineralization is hosted by a NE-trending shear corridor called the Makosa corridor (Makosa shear zone), therefore sub-parallel to the MTZ. It has a subvertical dip (75˚ to 85˚ to the NW). It is associated with a hydrothermal phase characterized by quartz-sericite-epidote-fine, disseminated pyrite and arsenopyrite ± albite ± chlorite paragenesis. These minerals testify to the existence of a low degree of metamorphism (greenschist facies, epizonal domain) in the area. However, metamorphism reaches amphibolite facies in some places, particularly in the vicinity of intrusive bodies, with the presence of hornblende (amphiboles) and plagioclase. The gold mineralization is mainly hosted by two (2) metasedimentary lithological units: meta-greywackes and shales.
文摘The Boulon Djounga eastern perimeter is part of the Tiawa operating permit of the Société des Mines du Liptako (SML), located in the central southwestern part of Liptako (Niger). In this study, we used field data, Reverse Circulation (RC) surveys and chemical analyzes of gold to determine the characteristics of gold and its mineralization style. The eastern perimeter of Boulon Djounga is represented by a succession of metabasalts and metasediments both intersected by intrusions of quartz and dolerite dykes, and covered by sandstone and clayey rocks. Gold is present in low contents (0.00 - 0.30 ppm) in the sedimentary cover and in medium (0.30 - 1.00 ppm) or high contents (1.00 - 4.534 ppm) in the metasediments, and in the gray quartz veins and locally in the volcanics. It exists in a disseminated state or in a concentrated state in the surrounding areas in the form of discrete grains associated with sulphurous minerals (pyrite: FeS<sub>2</sub>, chalcopyrite: CuFeS<sub>2</sub> or arsenopyrite: FeAsS). The presence of gold in the quartz veins, and the NE-SW and NW-SE orientations of the ore bodies suggest that the eastern Boulon Djounga gold mineralization would be established during a late magmatic extensive phase.
文摘The Intiédougou located in the Houndé Birimian greenstone belt has been the subject of several mining and geoscience studies that have led to the discovery of mineralized gold targets. One of these mineralized targets has prompted work that raises the issue of control factors for the gold mineralization of the prospect. The methodology used in this study combines a study of core drill hole data located in the area and laboratory studies. The Intiédougou sector is based on andesito-basaltic, andesitic interstratified volcanoclastite rocks and Tarkwaïen type detrital sedimentary rocks caught in a vice in the volcano-sedimentary unit. Lithostructural analysis of the sector shows that the subvolcanic rocks bearing gold mineralization are subjected to heterogeneous ductile to brittle deformations and affected by hydrothermalism evolving at stages marked by large fissure fillings. These hydrothermal phases evolve in the zones of expansion created by the brittle deformations that have contributed to the deposits of different types of gold-enriched sulphides. These different phases of hydrothermal destabilization generally of low degree accompany the tardi to post-eburnean brittle tectonics. This deformation system is favorable to the establishment of gold mineralization in the form of vein bodies. The overimposition of deformed and altered areas suggests a genetic relationship between deformation and hydrothermal activity. In conclusion, the mineralization of Intiédougou in vein styles, set up in a volcanic arc environment with a paragenesis of gold-pyrite deposit ± chalcopyrite would be controlled by the structural aspect and accompanied by hydrothermal alteration.
文摘The characterization of the relationships between mineralization and hydrothermal alteration is an essential element in understanding gold deposits. In south-west Burkina Faso, the Napélépéra mineralisation, the mobility of chemical elements and alteration-mineralization relationships were studied by means of selected core drilling and geochemical analyses using ICP-MS (Inductively Coupled Plasma Mass Spectrometry) and ICP-AES (Inductively coupled plasma atomic emission spectroscopy). The mineralised granodiorite is grey porphyroid with quartz, plagioclase, biotite and amphibole. It is metaluminous and located in the tholeiitic series. The Na<sub>2</sub>O + CaO versus Fe<sub>2</sub>O<sub>3</sub> + MgO alteration diagram divides the samples according to alteration dominance. Chloritisation and carbonation are the main alterations. There is a relationship between gold mineralisation at Napélépéra and alteration, and the paragenesis of gold + pyrite ± carbonate ± silica ± sericite is the main characteristic. Carbonation is the result of fluid input in the shear corridor of the mineralised zone. The mass balance of comparative metals in the proximal and distal zones of the mineralisation shows the absence of metals, while As, Hg, Ag and Bi are strongly enriched from the distal zone to the mineralised zone. The oxides associated with the mineralisation are mainly NaO, SrO and CaO.
基金Project(50874030)supported by the National Natural Science Foundation of ChinaProject(2009AA06Z104)supported by the National High-Tech Research and Development Program of ChinaProject(2008BAB34B01)supported by the National Support Program of China during the 11th Five-Year Plan Period
文摘The microscopy and scanning electronic microscopy (SEM) were used to study the gold occurrence of Jiaojia gold mine, Shandong province. The results show that the gold-bearing minerals are composed of pyrite, chalcopyrite, gangue, sphalerite and galena. 77.12% of gold minerals are the sulphides and 22.88% are the gangues. The gold occurrence is composed of 60.28% fissure gold, 21.63% inclusion gold and 18.09% crystal fractured gold. The morphology of gold mineral is composed of sphere, triangle, rectangle, strip and erose. The Jiaojia gold mineral owns large grain size range from 3-5 μm to 100 μm. 1.5% of gold grains is more than 0.104 mm, 5.26% is 0.074-0.104 mm, 23.31% is 0.043-0.074 mm, 3.76% is 0.043-0.037 mm and 64.29% is less than 0.037 mm. The occurrence of gold mineral is composed of native gold, electrum, native silver, iron-bearing native silver, goldcuprid and acanthite. Electrum is the most important mineral, accounting for 71.56%. The average quality is 641.26‰ for gold and silver mineral.
基金supported by the National Basic Research Program of China(973 Program)(No. 2009CB421008)111 Project(No.B07011)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)
文摘Red clay type gold deposits,located in the south of China,are situated not only in orogenic belts,but also in inner cratons,where climate is tropical-subtropical with clear arid and humid.The lateritic weathering crust often can be divided into five zones,including topsoil,siliceous duricrust zone,multi-color zone(or red clay zone in some deposits),pallid zone and saprolite zone from surface to the base rock,several of which are absent in some deposits.The base rocks are composed mainly of carbonate rocks with minor clastic rocks,intermediate-basic volcanic rocks and intermediate-acid and alkalic intrusions.The orebodies are mainly located in the multi-color zone with part of them in the pallid and saprolite zones.The ore sources include orebodies of Carlin-type gold deposits and porphyry gold deposits,as well as gold-rich base rocks.The red clay type gold deposits experienced early-stage endogenic gold mineralization and laterization during the Tertiary and Quaternary.The areas with endogenic gold deposits,especially Carlin-type gold deposits and porphyry gold deposits in karst depressions on the plateau,structual erosional platforms in the middle-lower mountains,and intermountain basins in southern China are well worth studying to trace red clay type gold deposits.
基金provided by the National Key Research and Development Program of China "Deep Structure and Ore-forming Process of Main Mineralization System in Tibetan Orogen"(2016YFC0600300)the National Basic Research Program of China (2011CB403104)+1 种基金the China Geological Survey (12120113037901)the National Natural Science Foundation of China(41320104004) and(41503040)
文摘The Nianzha gold deposit, located in the central section of the Indus-Yarlung Tsangpo suture (IYS) zone in southern Tibet, is a large gold deposit (Au reserves of 25 tons with average grade of 3.08 g/t) controlled by a E-W striking fault that developed during the main stage of Indo-Asian collision (-65-41 Ma). The main orebody is 1760 m long and 5.15 m thick, and occurs in a fracture zone bordered by Cretaceous diorite in the hanging wall to the north and the Renbu tectonic melange in the footwall to the south. High-grade mineralization occurs in a fracture zone between diorite and ultramafic rock in the Renbu tectonic melange. The wall-rock alteration is characterized by silicification in the fracture zone, serpentinization and the formation of talc and magnesite in the uitramafic unit, and chloritization and the formation of epidote and calcite in diorite. Quartz veins associated with Au mineralization can be divided into three stages. Fluid inclusion data indicate that the deposit formed from H20-NaCl-organic gas fluids that homogenize at temperatures of 203℃-347℃ and have salinities of 0.35wt%-17.17wt% NaCI equivalent. The quartz veins yield δ18Ofluid values of 0.15‰-10.45‰, low δDv-SMow values (-173%o to -96%o), and the δ13C values of-17.6‰ to -4.7‰, indicating the ore-forming fluids were a mix of metamorphic and sedimentary orogenic fluids with the addition of some meteoric and mantle-derived fluids. The pyrite within the diorite has δ34SV-CDT values of -2.9‰-1.9‰(average -1.1‰), 206pb/204pb values of 18.47- 18.64, 207pb/204pb values of 15.64-15.74, and 208pb/204pb values of 38.71-39.27, all of which are indicative of the derivation of S and other ore-forming elements from deep in the mantle. The presence of the Nianzha, Bangbu, and Mayum gold deposits within the IYS zone indicates that this area is highly prospective for large orogenic gold deposits. We identified three types of mineralization within the IYS, namely Bangbu-type accretionary, Mayum-type microcontinent, and Nianzha-type ophiolite-associated orogenic Au deposits. The three types formed at different depths in an aeeretionary orogenic tectonic setting. The Bangbu type was formed at the deepest level and the Nianzha type at the shallowest.
基金the National Natural Science Foundation of China(Nos.41402042,41002064)Natural Sciences and Engineering Research Council of Canada Discovery Grant+1 种基金Fundamental Research Funds for the Central Universities(310827172006,300102278402)Geological Investigation Work Project of China Geological Survey(12120115069701).
文摘The Central Asian Orogenic Belt,as one of world-class gold economic belts,preserves a number of giant,large black shale-hosted gold deposits,while it is still debated for origin of sulfides and gold mainly due to lack of identification for multiple stages of sulfides.The Haoyaoerhudong gold deposit is hosted in a sequence of Mesoproterozoic carbonaceous and pyritic slate,phyllite,and schist that form a tight syncline along the north margin of the North China Craton.Detailed petrography of the host rocks and mineralization have defined five stages of pyrites.The earliest form of pyrite(Py_(1))occurs as fine-grained dispersed pyrite in black carbonaceous slate and medium-to coarse-grained disseminated pyrite in pyrite-rich layers,contains relative low gold and high arsenic content,indicating a syn-sedimentary or diagenetic in origin.Stage Ⅱ pyrite(Py_(2))occurs with garnet and quartz inclusions and Py_(3) occurs as pyrite veins,contains higher gold and lower As content,and are interpreted to have formed from the dissolution-reprecipitation of Py_(1) during the peak metamorphism or post-peak metamorphism.Stage Ⅳ pyrite(Py_(4))from the pyrite-quartz veins crosscut the metamorphic garnet,contains the highest gold concentrations and other trace elements,and is considered to have formed post-peak metamorphism.Abundant native gold,electrum,and maldonite occur as inclusions within Py_(4) and monazite and in fractures that crosscut garnet.While,Py_(5) with typical remobilized feature is thought to be a product of melting of former pyrites(Py_(1) to Py_(4))triggered by the large-scale Hercynian magmatism.The sedimentary/diagenetic Py_(1) have δ^(34)S values that range from +12.4‰to +16.2‰.Later generations of sulfides,including Py_(2) to Py_(5),and Ccp_(2) to Ccp_(3),have δ^(34)S values from +9.5‰to +12.7‰.Monazite with maldonite inclusions from quartz-pyrite veins yielded an intercept age of 341.3±6.6 Ma,while coarse grained monazite associated biotite along fractures in the reefs yielded an intercept age of 254.6±8.2 Ma.The paragenetic,textural,chemical,and isotopic data suggest three distinct gold producing episodes at Haoyaoerhudong gold deposit.Gold and arsenic were clearly initially concentrated in organic muds,and enriched along the structures of diagenetic arsenic-rich pyrite.Subsequently,accompanying metamorphism and deformation,gold was liberated from the dissolution of diagenetic pyrites to form the pyrite veins.Finally,accompanying transformation of pyrite into pyrrhotite,gold was released into the metamorphic fluids to become concentrated as native gold,electrum,and maldonite in pyrite-quart veins.Monazite with age of 341 Ma from quartz-pyrite veins suggests that the third major gold mineralizing event in Haoyaoerhudong occurred before the Hercynian magmatism,suggesting that the Haoyaoerhudong deposit is a typical orogenic gold deposit rather than intrusion-related deposit.
基金partly supported by a University of Malaya research grant(PV095-2012A)
文摘The Penjom Gold Mine is located 30 km from the Bentong-Raub Suture at the western boundary of the Central Belt in Peninsular Malaysia. Gold mineralization hosted within the vein system is associated with pyrite, arsenopyrite, and minor base metals including galena. Trace element and lead isotope analysis was undertaken on nine samples that represent two stages of galena formed during two tectonic events. Both the Pb isotopes and the trace elements show that the first stage galena within the mineralized areas at the footwall has different geochemical characteristics compared with galena in non mineralized areas in the hanging wall, suggesting that galena crystallized from two different ore fluids and probably at two different times. Higher Te, Se and Bi in the galena from the mineralized area may indicate hydrothermal fluids that migrate through the structural conduit and leached out the metal along the pathway that consist of dominant carbonaceous unit. The Pb isotopic ratio composition are transitional between the bulk crustal growth and an upper crustal growth curve, indicating that derivation was from arc rocks associated with continental crust or a crustal source that includes arc volcanic and old continental sedimentary rocks.
文摘This paper seeks to identify macroscopic metallogenic mechanisms of various mineral deposits by studying microscopic typomorphic characteristics of typical minerals associated with the deposits and to reveal the mechanism of lattice gold in detail by studying both physical and chemical characteristics of quartz from representative gold deposits in the North China Platform.As part of their extensive research,the authors examine the relationship between trace elements with wall rock,the ore-forming media,and gold immigration of various types of gold deposits,including their salinity,type,temperature.These are key factors to revealing the mineralization mechanism,and indicators for mineral prospecting,exploration,mining,and metallurgical technology.In order to address the questions posed,the following methods were used:field investigations of geology and sampling of the representative gold deposits,physical study and chemical analysis of quartz including,but not limited to,fluid inclusions as well as their compositions and trace elements in quartz,the unit cell parameters,electron paramagnetic resonance spectrum(EPR),and infrared spectroscopic analysis(ISA).As a result of this study,the authors observe the following key findings:unit cell parameters of quartz vary with their contents of foreign elements including gold,paragenetic stage,wall rock type,and other factors;the higher the forming temperature and the lower the gold content in quartz,the smaller the unit cell parameters,and vice versa.Additionally,the EPR absorption lines resulted from the O–Al defect center.The density of these types of hole centers increases and the EPR signal strengthens when the temperature decreases.Based on the findings,the authors conclude that lattice gold exists in quartz.Gold,in the form of Au^(+)and/or Au^(3+),entering quartz and producing an electron–hole center,namely,the O-Au hole center,makes the center produce spin resonance absorption and results in the EPR absorption peak#I.Both unit cell parameters and EPR of quartz can potentially be used in mineral prospecting,relative ore-forming temperature determination,and grade control during mining.
文摘The Um Rus tonalite-granodiorite intrusion(~6 km2)occurs at the eastern end of the Neoproterozoic,ENE-trending Wadi Muba rak shear belt in the Central Eastern Desert of Egypt.Gold-bearing quartz veins hosted by the Um Rus intrusion were mined intermittently,and initially by the ancient Egyptians and until the early 1900 s.The relationship between the gold mineralization,host intrusion,and regional structures has always been unclear.We present new geochemical and geochronological data that help to define the tectonic environment and age of the Um Rus intrusion.In addition,field studies are integrated with EPMA and LA-ICP-MS data for gold-associated sulfides to better understand the formation and distribution of gold mineralization.The bulk-rock geochemical data of fresh host rocks indicate a calc-alkaline,metaluminous to mildly peraluminous,I-type granite signature.Their trace element composition reflects a tectonic setting intermediate between subduction-related and within-plate environments,presumably transitional between syn-and post-collisional stages.The crystallization age of the Um Rus intrusion was determined by in situ SHRIMP 206 Pb/238 U and 207Pb/235U measurements on accessory monazite grains.The resultant monazite U-Pb weighted mean age(643±9 Ma;MSWD 1.8)roughly overlaps existing geochronological data for similar granitic intrusions that are confined to major shear systems and are locally associated with gold mineralization in the Central Eastrn Desert(e.g.,Fawakhir and Hangaliya).This age is also consistent with magmatism recognized as concomitant to transpressional tectonics(D2:~650 Ma)during the evolution of the Wadi Mubark belt.Formation of the gold-bearing quartz veins in NNE-SSW and N-S striking fault segments was likely linked to the change from transpressional to transtensional tectonics and terrane exhumation(D3:620-580 Ma).The development of N-S throughgoing fault arrays and dike swarms(~595 Ma)led to heterogeneous deformation and recrystallization of the mineralized quartz veins.Ore minerals in the auriferous quartz veins include ubiquitous pyrite and arsenopyrite,with less abundant pyrrhotite,chalcopyrite,sphalerite,and galena.Uncommon pentlandite,gersdorffite,and cobaltite inclusions hosted in quartz veins with meladiorite slivers are interpreted as pre-ore sulfide phases.The gold-sulfide paragenesis encompasses an early pyrite-arsenopyrite±loellingite assemblage,a transitional pyrite-arsenopyrite assemblage,and a late pyrrhotite-chalcopyrite-sphalerite±galena assemblage.Free-milling gold/electrum grains(10 sμm-long)are scattered in extensively deformed vein quartz and in and adjacent to sulfide grains.Marcasite,malachite,and nodular goethite are authigenic alteration phases after pyrrhotite,chalcopyrite,and pyrite and arsenopyrite,respectively.A combined ore petrography,EPMA,and LA-ICP-MS study distinguishes morphological and compositional differences in the early and transitional pyrites(PyⅠ,PyⅡ)and arsenopyrite(ApyⅠ,ApyⅡ).Py I forms uncommon small euhedral inclusions in later PyⅡand Apy II.PyⅡforms large subhedral crystals with porous inner zones and massive outer zones,separated by narrow As-rich irregular mantles.The Fe and As contents in PyⅡare variable,and the LA-ICP-MS analysis shows erratic concentrations of Au(<1 to 177 ppm)and other trace elements(e.g.,Ag,Te,and Sb)in the porous inner zones,most likely related to discrete sub-microscopic sulfide inclusions.The outer massive zones have a rather homogenous composition,with consistently lower abundances of base metals and Au(mean 1.28 ppm).The early arsenopyrite(Apy I)forms fine-grained euhedral crystals enriched in Au(mean 17.7 ppm)and many other trace elements(i.e.,Ni,Co,Se,Ag,Sb,Te,Hg,and Bi).On the other hand,ApyⅡoccurs as coarsegrained subhedral crystals with lower and less variable concentrations of Au(mean 4 ppm).Elevated concentrations of Au(max.327 ppm)and other trace elements are measured in fragmented and aggregated pyrite and arsenopyrite grains,whereas the undeformed intact zones of the same grains are poor in all trace elements.The occurrence of gold/electrum as secondary inclusions in deformed pyrite and arsenopyrite crystals indicates that gold introduction was relatively late in the paragenesis.The LAICP-MS results are consistent with gold redistribution by the N-S though-going faults/dikes overprinted the earlier NNW-SSE quartz veins in the southeastern part of the intrusion,where the underground mining is concentrated.Formation of the Um Rus intrusion and gold-bearing quartz veins can be related to the evolution of the Wadi Mubarak shear belt,where the granitic intrusion formed during or just subsequent to D2 and provided dilatation spaces for gold-quartz vein deposition when deformed by D3 structures.
文摘The ca. 126e120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as&gt;3000 t Au. The vein and disseminated ores are hosted by NE-to NNE-trending brittle normal faults that parallel the margins of ca. 165e150 Ma, deeply emplaced, lower crustal melt granites. The deposits are sited along the faults for many tens of kilometers and the larger orebodies are associated with dilatational jogs. Country rocks to the granites are Pre-cambrian high-grade metamorphic rocks located on both sides of a Triassic suture between the North and South China blocks. During early Mesozoic convergent deformation, the ore-hosting structures developed as ductile thrust faults that were subsequently reactivated during Early Cretaceous "Yan-shanian"intracontinental extensional deformation and associated gold formation. 〈br〉 Classification of the gold deposits remains problematic. Many features resemble those typical of orogenic Au including the linear structural distribution of the deposits, mineralization style, ore and alteration assemblages, and ore fluid chemistry. However, Phanerozoic orogenic Au deposits are formed by prograde metamorphism of accreted oceanic rocks in Cordilleran-style orogens. The Jiaodong de-posits, in contrast, formed within two Precambrian blocks approximately 2 billion years after devolati-lization of the country rocks, and thus require a model that involves alternative fluid and metal sources for the ores. A widespread suite of ca. 130e123 Ma granodiorites overlaps temporally with the ores, but shows a poor spatial association with the deposits. Furthermore, the deposit distribution and mineral-ization style is atypical of ores formed from nearby magmas. The ore concentration requires fluid focusing during some type of sub-crustal thermal event, which could be broadly related to a combination of coeval lithospheric thinning, asthenospheric upwelling, paleo-Pacific plate subduction, and seismicity along the continental-scale Tan-Lu fault. Possible ore genesis scenarios include those where ore fluids were produced directly by the metamorphism of oceanic lithosphere and overlying sediment on the subducting paleo-Pacific slab, or by devolatilization of an enriched mantle wedge above the slab. Both the sulfur and gold could be sourced from either the oceanic sediments or the serpentinized mantle. A better understanding of the architecture of the paleo-Pacific slab during Early Cretaceous below the eastern margin of China is essential to determination of the validity of possible models.
文摘Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing sharply, and the economic situation of the industry is one of low base rate. The current hierarchical structure of the exploration and mining industry makes this situation difficult to redress. Economic geologists can do little to influence the required changes to the overall structure and philosophy of an industry driven by business rather than geological principles, However, it should be possible to follow the lead of the oil industry and improve the success rate of greenfield exploration, necessary for the next group of lower-exploration-spend significant mineral deposit discoveries. Here we promote the concept that mineral explorers need to carefully consider the scale at which their exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of terrane to province to district scale, rather than deposit scale, where most current economic geology research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich systems are viewed at the deposit scale, they appear quite different in terms of conventionally adop- ted research parameters. However, recent models for these deposit styles show increasingly similar source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It is only by assessing individual targets in their tectonic context that they can be more reliably ranked in terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and such exploration could lead to incidental discovery of major deposits of other metals sited along the same tectonic boundaries.
文摘The Central Africa Fold Belt(CAFB)is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years.However,favorable areas for gold exploration are poorly known.This paper presents(1)the kinematics of the brittle deformation in the Kékem area in the SW portion of the Central Cameroon Shear Zone and(2)constraints gold mineralization events with respect to the collisional evolution of the CAFB.The authors interpret that the conjugate ENE to E and NNW to NW trending lineament corresponds to the synthetic(R)and the antithetic(R’)shears,which accompanied the dextral slip along the NE to ENE striking shear.The latter coincides with the last 570-552 Ma D3 dextral simple shear-dominated transpression,which is parallel to the BétaréOya shear zone hosting gold deposits.Gold mineralizations,which mainly occurred during the last dextral shearing,are disseminated within quartz veins associated to Riedel’s previous structures reactivated due to late collisional activities of the CAFB as brittle deformation.Gold mineralizations occurred mainly during the 570-552 Ma D3 event.The reactivation,which might be due to dextral simple shear during mylonitzation,plausibly remobilized the early gold deposits hosted in syn-compressional rocks and/or possibly focused deep-sourced fluid mixed with those released by dehydration.Therefore,the Central Cameroon Shear Zone where Kékem is located,and which shows similar petrographical and structural features to those controling Batouri gold district,is a target area for gold exploration in Cameroon.
基金Supported by Project of National Natural Science Foundation of China(No.41172072)
文摘Haigou gold deposit is a typical orogenic gold deposit. There are a reasonable amount of fluid inclusions in the gold deposit,including three types: CO2-H2O-Na Cl inclusions,pure CO2 inclusions and Na Cl-H2 O inclusions,of which most of them are CO2-bearing inclusions. The fluid salinity is 1. 43%- 9. 08%,mainly concentrated in the range of 4. 69%- 5. 41%,the density of CO2 is 0. 69- 0. 80 g / cm3,indicating that the mineralization fluid is low-medium salinity and low density fluid. A series of studies on gold-bearing quartz vein and fluid inclusions show that there exists a positive correlation between the degree of the gold mi-neralization and the amount of CO2 in the inclusions,which means the more CO2-bearing inclusions there are,the higher the content of gold is. CO2 is mainly derived from mantle fluid,and the ore-forming fluid should be derived from mantle fluid and the crust shallow fluid. The conclusions have important denotative meaning on the metallogenic mechanism of orogenic gold deposit and the deep prospecting on metal deposit.
文摘The gold mineralization of the Tondabo prospect, located in the northern part of the Oumé-Toumodi-Fettêkro greenstone belt, is mainly hosted in the rhyodacite and to a lesser extent in the mafic volcanics (volcanic lavas and volcanoclastites). These rocks were affected by a hydrothermal alteration marked by quartz veins and veinlets associated with crystals of carbonates, sericite, epidote and sulfides. This hydrothermal alteration induced a pervasive alteration of the surrounding bodies with silicification, chloritization, carbonation and sericitization of the feldspars. The metalliferous paragenesis contains an abundant pyrite, with rare pyrrhotite and chalcopyrite. This mineralization indicates that the Tondabo gold prospect exhibits lithological control. The mineralized deposits are generally affected by a S1 schistosity oriented mainly N000-010° and minority N040-050° with a general dip of 60°-80°to the West;however with rare N-S orientations with a dip of 60°-80° to the East. The drilling intervals show that the highest gold contents are linked to the quartz-carbonates veins and veinlets, which are located in the highly deformed zones, characterizing local shear zones.
文摘The Wangershan gold deposit and spatially related Shangzhuang granite, eastern Shandong Province, have been precisely dated by 40 Ar/ 39 Ar laser incremental heating technique. Magmatic hornblende and biotite, collected from the Shangzhuang granites, yielded well-defined and reproducible plateau ages at 128.1-127.5 and 124.4-124.1 Ma (2 σ ), measuring the cooling ages of the intrusion at ca. 500 ℃ and 300-350 ℃, respectively. Hydrothermal sericite extracted from auriferous vein gave high-quality plateau ages between (120.6±0.3) Ma and (120.0±0.4) Ma (2 σ ). Given the similarity of the closure temperature for argon diffusion (300-350 ℃) in the sericite mineral to the homogenization temperature of primary fluid inclusions in the quartz from gold ores, and the intergrowth of sericite with native gold, present 40 Ar/ 39 Ar sericite ages can be reliably interpreted in terms of the mineralization age for the Wangershan deposit. 40 Ar/ 39 Ar hornblende and biotite ages permit an estimate for the cooling rate of the Shangzhuang granite at about 50 ℃/Ma. There are abundant intermediate-mafic dikes in most gold camps of eastern Shandong, whose ages of formation have been previously constrained mainly at 121-119 Ma. The temporal association between the Shangzhuang granite, the Wangershan gold deposit, and the widespread dikes confirms that intrusive activity, gold mineralization, and dike emplacement in this region were broadly coeval, reflecting significant continental lithosphere thinning and resulting crustal extension of Early Cretaceous in eastern China.
基金co-financed by the National Natural Science Foundation of China (Grant No.41502067)the Science and Technology Innovation Program of Hunan Province (Grant No.2021RC4055)。
文摘High-K granites dominate the rock units in the Bakoshi and Gadanya areas located in the northwestern Nigerian subshield,part of the Trans-Saharan Belt,West Africa.In this contribution,the LA-ICP-MS zircon trace element revealed the fertility of magma responsible for the high-K granites that hosts the Bakoshi–Gadanya gold mineralization.Two likely metallogenic granites types are 1)Gadanya alkali granite,with high Ce^(4+)/Ce^(3+)(mean 1485)and limited range of Eu anomalies may likely be associated with the gold mineralization,and 2)Bakoshi porphyritic granite,Jaulere biotite granite,Shanono coarsegrained granite,and Yettiti granite,all have low Ce^(4+)/Ce^(3+) ratios(mean\100,except second Bakoshi granite D2-1)with wider ranges of Eu/Eu^(*) values,thus are considered reduced granites.These reduced granites have oxygen fugacity values and Eu anomalies comparable to reduced granites associated with tin belts in Myanmar and Zaaiplaats granites in Bushveld Complex,South Africa.Ti-inZircon thermometric study revealed two thermal regimes during the crystallization of the Bakoshi–Gadanya granites:the high temperature(746–724℃):Shanono coarsegrained granite,Bakoshi granite D2-1,and Jaulere biotite granite;and relatively low temperature(705–653℃):Bakoshi porphyritic granite D1-1,Yettiti medium-grained granite,and Gadanya alkali granite.Zircon trace elements including U,Yb,Y,Nb,and Sc ratios constraint the magma source of Bakoshi–Gadanya granites to an enriched mantle metasomatized during the subduction process before its melting.Except for Gadanya alkali granite,fractionation of titanite and apatite dominate the magma evolution with limited amphibole fractionation.Melt that crystallized Gadanya alkali granite is rather saturated in zircon without accessory titanite or apatite.
基金This research was supported by the Funds for Key Scientific and Technological Projects of the 9th Five-Year Plan.
文摘According to the differences in ore-controlling structural systems and the characteristics of host rocks, textures and structures of ores and mineral associations of ores, quartz vein-type gold deposits in the Rushan area can be divided into the Rushan and Tongling styles. Rushan style gold deposits, occurring in the Kunyushan complex, include Rushan, Tangjiagou and Tongxishan gold mines. They are distributed along four NNE-trending and sinistral, compresso-shear faults with a right stepping array. A prominent characteristic of the gold mineralization is that the orebodies in neighbouring gold deposits distributed in a single ore-controlling fault zone take opposite pitches. Study of the locating structures of the quartz vein gold deposits shows that the Rushan-style gold deposits are characterized by NNE and NE zoning. Therefore, the intersections of the NE direction of the known gold deposit and the neighbouring NNE-trending fault zones are favourable for looking for gold deposits, and the ends of the curving segments of sinistral and right-stepping faults are favourable for looking for large gold deposits. Tongling-style gold deposits occur in the Sanfosan porphyritic monzonitic granite. Emplacement of gold deposits is controlled by arcuate and radiate structures formed during the intrusion of the Sanfoshan porphyritic monzonitic granite; the radiate faults controlled the distribution of orebodies and the arcuate faults controlled the pitch of the orebodies.