The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are ...The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are located in the Kwademen-Baguiomo shear zone. This mineralization, located only a few kilometers from the Kwademen gold deposit, is uncharacterized and, together with the latter, could constitute a gold potential capable of being economically exploitable. It is in this sense that this work is carried out with a view to characterizing the gold mineralization of the Baguiomo gold panning site. To carry out this work, we have made direct field measurements, combined with microstructures, and combined all this with data from geochemical rock analysis of the basalts that are the main host formations. Geochemical data show that tholeitic basalts formed from a mantle plume that was emplaced in an oceanic plateau context. Calc-alkaline basalts and andesites are comparable to Paleoproterozoic tholeitic basalts (PTH3), which are slightly enriched in light rare earths. Fertility tests show that these basalts concentrate between 3 and 6 ppb of gold at the time of accretion, which is sufficient for remobilization of this primary gold during the Eburnian orogeny to yield a deposit of around 4 - 5 Moz. Gold mineralization is associated with pyrite crystals when the latter are disseminated in the rock mass, whereas it is associated with hematite in quartz veins concordant with S1 shear deformation. It is mainly the pyrite crystals in the pressure shadows that contain the gold grains, whose development would be synchronous with micro-shear zone reactivation during the first phase of D1<sub>B</sub> deformation. The second phase of D2<sub>B</sub> deformation, which is a crenulation or fracture schistosity, does not significantly affect the shear deformation that controls mineralization.展开更多
The sediments collected respectively from the Etó, Kacumvi, Kimbi, Lubichako, Makungu, Kuwa, Mandje, Misisi and Kimuti Rivers draining the gold panning sites in the Fizi territory were studied during a 16-month c...The sediments collected respectively from the Etó, Kacumvi, Kimbi, Lubichako, Makungu, Kuwa, Mandje, Misisi and Kimuti Rivers draining the gold panning sites in the Fizi territory were studied during a 16-month cycle (August and December 2016 to August and December 2017) in order to assess their degree of mercury pollution in the dry season as well as in the rainy season. The assessment of the degree of pollution of the said sediments focused on six parameters including the total mercury content (THg) and the indices of mercury pollution such as the mercury enrichment factor (EF), the mercury contamination factor (CF), the mercury geoaccumulation index (Igeo), the mercury potential ecological risk factor (PERF) and the mercury ecological risk index (ERI). Total mercury was determined by atomic absorption spectrophotometry (AAS) while the mercury pollution indices were successively calculated using the appropriate formulas. The results thus obtained revealed that all the sediments of the rivers studied are considerably polluted by mercury according to the values relative to their total mercury content and mercury pollution indices, including the mercury enrichment factor (EF), the mercury contamination factor (CF), the mercury geoaccumulation index (Igeo), the mercury potential ecological risk factor (PERF) and the mercury ecological risk index (ERI), which greatly exceed the standards recommended by the Canadian Council of Ministers of the Environment. In particular, the sediments of the Kimbi River are highly polluted by mercury compared to those of other rivers studied. This reported pollution is the result of anthropogenic gold panning activities that generate effluents and elemental mercury that pollute the streams.展开更多
Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant im...Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.展开更多
Ivory Coast is a country rich in base metals and precious minerals: gold, manganese, diamond, iron, bauxite, cobalt and nickel. These natural resources are exposed to destruction and fragmentation by mining activities...Ivory Coast is a country rich in base metals and precious minerals: gold, manganese, diamond, iron, bauxite, cobalt and nickel. These natural resources are exposed to destruction and fragmentation by mining activities. The artisanal and small-scale exploitation of gold are increasingly practiced in our rural areas. These activities escape often in the control and monitoring of the mining administration. In order to better constrain these activities on the environment, the present work used remote sensing imageries to see its spatio-temporal impacts in the rural world in central Ivory Coast. The results show that gold artisanal activities have been practiced since 2013 and are experiencing an increasingly important growth. We note a devastation of forests and savannahs, a pollution of surface water, as well as an increase in poverty in rural areas. These activities are practiced near habited areas (villages). This creates a reduction of cultivatable soil. Remote sensing imageries make it possible to quickly map areas at large-scale gold mining in time and space.展开更多
A biomonitoring study was carried out to examine the adverse impacts of total mercury in the blood(HgB), urine(Hg U) and human scalp hair(HgH) on the residents of a mining district in Colombia. Representative bi...A biomonitoring study was carried out to examine the adverse impacts of total mercury in the blood(HgB), urine(Hg U) and human scalp hair(HgH) on the residents of a mining district in Colombia. Representative biological samples(scalp hair, urine and blood) were collected from volunteered participants(n = 63) to estimate the exposure levels of THg using a Direct mercury analyzer. The geometric mean of THg concentrations in the hair,urine and blood of males were 15.98 μg/g, 23.89 μg/L and 11.29 μg/L respectively, whereas the females presented values of 8.55 μg/g, 5.37 μg/L and 8.80 μg/L. Chronic urinary Hg(HgU)levels observed in male workers(32.53 μg/L) are attributed to their long termed exposures to inorganic and metallic mercury from gold panning activities. On an average, the levels of THg are increasing from blood(10.05 μg/L) to hair(12.27 μg/g) to urine(14.63 μg/L).Significant positive correlation was found between hair and blood urinary levels in both male and female individuals. Thus the present biomonitoring investigation to evaluate the Hg levels and associated health issues would positively form a framework for further developmental plans and policies in building an ecofriendly ecosystem.展开更多
文摘The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are located in the Kwademen-Baguiomo shear zone. This mineralization, located only a few kilometers from the Kwademen gold deposit, is uncharacterized and, together with the latter, could constitute a gold potential capable of being economically exploitable. It is in this sense that this work is carried out with a view to characterizing the gold mineralization of the Baguiomo gold panning site. To carry out this work, we have made direct field measurements, combined with microstructures, and combined all this with data from geochemical rock analysis of the basalts that are the main host formations. Geochemical data show that tholeitic basalts formed from a mantle plume that was emplaced in an oceanic plateau context. Calc-alkaline basalts and andesites are comparable to Paleoproterozoic tholeitic basalts (PTH3), which are slightly enriched in light rare earths. Fertility tests show that these basalts concentrate between 3 and 6 ppb of gold at the time of accretion, which is sufficient for remobilization of this primary gold during the Eburnian orogeny to yield a deposit of around 4 - 5 Moz. Gold mineralization is associated with pyrite crystals when the latter are disseminated in the rock mass, whereas it is associated with hematite in quartz veins concordant with S1 shear deformation. It is mainly the pyrite crystals in the pressure shadows that contain the gold grains, whose development would be synchronous with micro-shear zone reactivation during the first phase of D1<sub>B</sub> deformation. The second phase of D2<sub>B</sub> deformation, which is a crenulation or fracture schistosity, does not significantly affect the shear deformation that controls mineralization.
文摘The sediments collected respectively from the Etó, Kacumvi, Kimbi, Lubichako, Makungu, Kuwa, Mandje, Misisi and Kimuti Rivers draining the gold panning sites in the Fizi territory were studied during a 16-month cycle (August and December 2016 to August and December 2017) in order to assess their degree of mercury pollution in the dry season as well as in the rainy season. The assessment of the degree of pollution of the said sediments focused on six parameters including the total mercury content (THg) and the indices of mercury pollution such as the mercury enrichment factor (EF), the mercury contamination factor (CF), the mercury geoaccumulation index (Igeo), the mercury potential ecological risk factor (PERF) and the mercury ecological risk index (ERI). Total mercury was determined by atomic absorption spectrophotometry (AAS) while the mercury pollution indices were successively calculated using the appropriate formulas. The results thus obtained revealed that all the sediments of the rivers studied are considerably polluted by mercury according to the values relative to their total mercury content and mercury pollution indices, including the mercury enrichment factor (EF), the mercury contamination factor (CF), the mercury geoaccumulation index (Igeo), the mercury potential ecological risk factor (PERF) and the mercury ecological risk index (ERI), which greatly exceed the standards recommended by the Canadian Council of Ministers of the Environment. In particular, the sediments of the Kimbi River are highly polluted by mercury compared to those of other rivers studied. This reported pollution is the result of anthropogenic gold panning activities that generate effluents and elemental mercury that pollute the streams.
文摘Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.
文摘Ivory Coast is a country rich in base metals and precious minerals: gold, manganese, diamond, iron, bauxite, cobalt and nickel. These natural resources are exposed to destruction and fragmentation by mining activities. The artisanal and small-scale exploitation of gold are increasingly practiced in our rural areas. These activities escape often in the control and monitoring of the mining administration. In order to better constrain these activities on the environment, the present work used remote sensing imageries to see its spatio-temporal impacts in the rural world in central Ivory Coast. The results show that gold artisanal activities have been practiced since 2013 and are experiencing an increasingly important growth. We note a devastation of forests and savannahs, a pollution of surface water, as well as an increase in poverty in rural areas. These activities are practiced near habited areas (villages). This creates a reduction of cultivatable soil. Remote sensing imageries make it possible to quickly map areas at large-scale gold mining in time and space.
基金supported from Colombia by the Regional Autonomous Corporation for the Sustainable Development of Chocó (CODECHOCO),Department of ChocóThe Environmental Research Institute of the Pacific (IIAP)+6 种基金The Technological University of Chocó (UTCH)the National Program for Doctoral Formation (COLCIENCIAS 694-2014)the National Royalties Fund (FNR) of the National Planning Department (DNP) of Colombia based on the project: “Reduction of the use of Mercury and Improvement of Production and Sustainability in the Mining District of Istmina-Chocó”IPN (EDI,COFAA),México for their supportthe support by SNI-CONACy T,Méxicothe support of research fellowship from CONACyTpart of the “Scientific Developmental Program” initiated in University of Medellin,Colombia during 2014
文摘A biomonitoring study was carried out to examine the adverse impacts of total mercury in the blood(HgB), urine(Hg U) and human scalp hair(HgH) on the residents of a mining district in Colombia. Representative biological samples(scalp hair, urine and blood) were collected from volunteered participants(n = 63) to estimate the exposure levels of THg using a Direct mercury analyzer. The geometric mean of THg concentrations in the hair,urine and blood of males were 15.98 μg/g, 23.89 μg/L and 11.29 μg/L respectively, whereas the females presented values of 8.55 μg/g, 5.37 μg/L and 8.80 μg/L. Chronic urinary Hg(HgU)levels observed in male workers(32.53 μg/L) are attributed to their long termed exposures to inorganic and metallic mercury from gold panning activities. On an average, the levels of THg are increasing from blood(10.05 μg/L) to hair(12.27 μg/g) to urine(14.63 μg/L).Significant positive correlation was found between hair and blood urinary levels in both male and female individuals. Thus the present biomonitoring investigation to evaluate the Hg levels and associated health issues would positively form a framework for further developmental plans and policies in building an ecofriendly ecosystem.