The paper discusses the tectonic setting of the fortnation of the Dexing giant copper-gold-lead-zinc deposit and its geological features and demonstrates in detail the polygenetic compound mechanism of its formation.
The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of l...The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship.展开更多
From the studies of ore deposit geologic settings, sulfur i so topes, lead isotopes, carbon isotopes and oxygen isotopes, fluid inclusions and petrochemistry in this paper, the authors have drawn a conclusion that the...From the studies of ore deposit geologic settings, sulfur i so topes, lead isotopes, carbon isotopes and oxygen isotopes, fluid inclusions and petrochemistry in this paper, the authors have drawn a conclusion that the ore- forming hydrothermal solutions are the high-temperature magmatic hydrothermal s olutions for the gold ore deposit, and at the same time, the involvement of crus tal materials can not be ruled out. It is the first time that the authors have p roposed that the Laozuoshan gold-polymetallic ore deposit in Heilongjiang Prov ince was formed in the calc-alkaline series environment at the margin of an act ive continent.展开更多
The Baiyun deposit is a large gold deposit at the western end of the Liaoji rift zone in Liaoning Province, which has produced both auriferous quartz-vein type and altered-rock type mineralization. The ore bodies are ...The Baiyun deposit is a large gold deposit at the western end of the Liaoji rift zone in Liaoning Province, which has produced both auriferous quartz-vein type and altered-rock type mineralization. The ore bodies are mainly hosted in schist from the Gaixian Formation of the Liaohe Group. A detailed field geological survey showed that the quartz-vein type gold ore bodies are distributed in the near EW-trending and occur in the extensional tectonic space of schist in the Gaixian Formation, and the altered-rock type gold ore bodies are distributed in the near EW-trending structural belt and occur near in the Gaixian Formation of biotite schist, biotite granulite, marble and the upper footwall of dike. To further elucidate the source of ore-forming fluid and material in the Baiyun gold deposit, the H-O isotopes for quartz, S and Pb isotopes, in-situ trace elements for sulfides from quartz-vein and altered-rock type mineralization were studied. The H-O isotopic δD_(V-SMOW) and δ^(18)O_(H2O) values of the auriferous quartz range were from-88.8‰ to-82.2‰ and-1.95‰ to 4.85‰, respectively, suggests that the ore-forming fluids were mainly magmatic water with minor meteoric water. The distribution ranges of in-situ S isotopic compositions of Au-bearing pyrite in the quartz-vein type and altered-rock type ores were-8.38‰–-10.47‰(with average values of-7.89‰) and 11.38‰– 17.52‰(with average values of 11.55‰), respectively, indicating that the S isotopic compositions of the two ore types were clearly different. The in-situ Pb isotopic ratios changed almost uniformly, which showed that they had the same lead isotopic source. Based on the analysis of S and Pb isotopic compositions, the metallogenic materials in the Baiyun gold deposit were primarily from deep magma, and some wall rock materials may have been mixed in the metallogenic process. Co/Ni diagram shows that most Au-bearing pyrites have magmatic-hydrothermal or sedimentary alteration properties, and Au/As ratios were between 0.001 and 0.828(the average value was 0.07), indicating that the ore-forming fluid in the Baiyun gold deposit may have been deep magma. Combining the geological, trace element, and isotopic data, as well as data from previous studies, we propose that the Baiyun gold deposit is a magmatic-hydrothermal ore deposit.展开更多
文摘The paper discusses the tectonic setting of the fortnation of the Dexing giant copper-gold-lead-zinc deposit and its geological features and demonstrates in detail the polygenetic compound mechanism of its formation.
基金granted by the National Natural Science Foundation of China(grants No.41302067,41472067 and 41403043)the Fundamental Research Funds of Chinese Academy of Geological Sciences(grant No.YYWF201614 and 09 program of Institute of Geomechanics)IGCP/SIDA–600,and China Geological Survey(grant No.DD20160053)
文摘The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship.
文摘From the studies of ore deposit geologic settings, sulfur i so topes, lead isotopes, carbon isotopes and oxygen isotopes, fluid inclusions and petrochemistry in this paper, the authors have drawn a conclusion that the ore- forming hydrothermal solutions are the high-temperature magmatic hydrothermal s olutions for the gold ore deposit, and at the same time, the involvement of crus tal materials can not be ruled out. It is the first time that the authors have p roposed that the Laozuoshan gold-polymetallic ore deposit in Heilongjiang Prov ince was formed in the calc-alkaline series environment at the margin of an act ive continent.
基金supported by theNational Key Research and Development Program(No.2018YFC0603806)the Geological Surveying Project of China Geological Survey(No.DD20190166).
文摘The Baiyun deposit is a large gold deposit at the western end of the Liaoji rift zone in Liaoning Province, which has produced both auriferous quartz-vein type and altered-rock type mineralization. The ore bodies are mainly hosted in schist from the Gaixian Formation of the Liaohe Group. A detailed field geological survey showed that the quartz-vein type gold ore bodies are distributed in the near EW-trending and occur in the extensional tectonic space of schist in the Gaixian Formation, and the altered-rock type gold ore bodies are distributed in the near EW-trending structural belt and occur near in the Gaixian Formation of biotite schist, biotite granulite, marble and the upper footwall of dike. To further elucidate the source of ore-forming fluid and material in the Baiyun gold deposit, the H-O isotopes for quartz, S and Pb isotopes, in-situ trace elements for sulfides from quartz-vein and altered-rock type mineralization were studied. The H-O isotopic δD_(V-SMOW) and δ^(18)O_(H2O) values of the auriferous quartz range were from-88.8‰ to-82.2‰ and-1.95‰ to 4.85‰, respectively, suggests that the ore-forming fluids were mainly magmatic water with minor meteoric water. The distribution ranges of in-situ S isotopic compositions of Au-bearing pyrite in the quartz-vein type and altered-rock type ores were-8.38‰–-10.47‰(with average values of-7.89‰) and 11.38‰– 17.52‰(with average values of 11.55‰), respectively, indicating that the S isotopic compositions of the two ore types were clearly different. The in-situ Pb isotopic ratios changed almost uniformly, which showed that they had the same lead isotopic source. Based on the analysis of S and Pb isotopic compositions, the metallogenic materials in the Baiyun gold deposit were primarily from deep magma, and some wall rock materials may have been mixed in the metallogenic process. Co/Ni diagram shows that most Au-bearing pyrites have magmatic-hydrothermal or sedimentary alteration properties, and Au/As ratios were between 0.001 and 0.828(the average value was 0.07), indicating that the ore-forming fluid in the Baiyun gold deposit may have been deep magma. Combining the geological, trace element, and isotopic data, as well as data from previous studies, we propose that the Baiyun gold deposit is a magmatic-hydrothermal ore deposit.