This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the incl...This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.展开更多
This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conj...This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conjecture is transformed to prove that, for any odd prime sequence (3, 5, 7, <span style="font-size:12px;white-space:nowrap;">…</span>, <em>P<sub>n</sub></em>), there must have no LiKe sequence when the terms must be less than 3 <span style="font-size:12px;white-space:nowrap;">×</span> <em>P<sub>n</sub></em>. This method only studies prime numbers and corresponding composite numbers, replaced the relationship between even numbers and indeterminate prime numbers. In order to illustrate the importance of the idea of transforming the addition problem into the multiplication problem, we take the twin prime conjecture as an example and know there must exist twin primes in the interval [3<em>P<sub>n</sub></em>, <span><em>P</em></span><sup>2</sup><sub style="margin-left:-8px;"><em>n</em></sub>]. This idea is very important for the study of Goldbach conjecture and twin prime conjecture. It’s worth further study.展开更多
In this paper,we consider the generalized Moser-type inequalities,sayφ(n)≥kπ(n),where k is an integer greater than 1,φ(n)is Euler function andπ(n)is the prime counting function.Using computer,Pierre Dusart’s ine...In this paper,we consider the generalized Moser-type inequalities,sayφ(n)≥kπ(n),where k is an integer greater than 1,φ(n)is Euler function andπ(n)is the prime counting function.Using computer,Pierre Dusart’s inequality onπ(n)and Rosser-Schoenfeld’s inequality involvingφ(n),we give all solutions ofφ(n)=2π(n)andφ(n)=3π(n),respectively.Moreover,we obtain the best lower bound that Moser-type inequalitiesφ(n)>kπ(n)hold for k=2,3.As consequences,we show that every even integer greater than 210 is the sum of two coprime composite,every odd integer greater than 175 is the sum of three pairwise coprime odd composite numbers,and every odd integer greater than 53 can be represented as p+x+y,where p is prime,x and y are composite numbers satisfying that p,and x and y are pairwise coprime.Specially,we give a new equivalent form of Strong Goldbach Conjecture.展开更多
This paper demonstrates that Marshall’s logic on the supply and demand curve is not rigorous enough,that Coase’s theorem is flawed,and that the“Okishio Theorem”and Sweezy s logic are inadequate through empirical p...This paper demonstrates that Marshall’s logic on the supply and demand curve is not rigorous enough,that Coase’s theorem is flawed,and that the“Okishio Theorem”and Sweezy s logic are inadequate through empirical proof.By the way,the Goldbach conjecture is proved through clever mathematical proof.It shows that beautiful curves and mathematical formulas cannot be separated from reality and logic,and correct logic can play a correct role in market theory.In this paper,the analysis of the actual supply and demand curve,as well as the concepts and models of tax,profit rate and income,has positive practical significance for economic depression and stagflation.展开更多
In this paper,a formula is given. The formula gives the number of prime number solutions of the indefinite equation p 1+p 2=2n , and based on it, an equivalent proposition to the conjecture of Goldbach is obtained.
The famous strongly binary Goldbach’s conjecture asserts that every even number 2n ≥ 8 can always be expressible as a sum of two distinct odd prime numbers. We use a new approach to dealing with this conjecture. Spe...The famous strongly binary Goldbach’s conjecture asserts that every even number 2n ≥ 8 can always be expressible as a sum of two distinct odd prime numbers. We use a new approach to dealing with this conjecture. Specifically, we apply the element order prime graphs of alternating groups of degrees 2n and 2n −1 to characterize this conjecture, and present its six group-theoretic versions;and further prove that this conjecture is true for p +1 and p −1 whenever p ≥ 11 is a prime number.展开更多
The present paper gives the proof of the set of primes as a continuum. It starts with the density of the primes, and shortly recapitulates the prime-number-formula and the complete-prime-number-formula. Reflecting the...The present paper gives the proof of the set of primes as a continuum. It starts with the density of the primes, and shortly recapitulates the prime-number-formula and the complete-prime-number-formula. Reflecting the series of the primes over any prime gives the double density of occupation of integer positions by the union of the series of multiples of the primes. The remaining free positions render it possible to prove Goldbach’s conjecture and the set of primes as a continuum. The theoretical evaluation is followed in annexes by numerical evaluation, demonstrating the theoretical results. The numerical evaluation results in different constants and relations, which represent inherent properties of the set of primes.展开更多
The present paper gives the proof of the set of primes as continuum and evaluates the analytical formula for the integral of the inverse of the primes over the distance. First it starts with the density of the primes,...The present paper gives the proof of the set of primes as continuum and evaluates the analytical formula for the integral of the inverse of the primes over the distance. First it starts with the density of the primes, shortly recapitulates the prime-number-formula and the complete-prime-number-formula, the proof of the set of primes as continuum. The theoretical evaluation is followed in annexes by numerical evaluation of the theoretical results and of different constants, which represent inherent properties of the set of primes.展开更多
We know Pascal’s triangle and planer graphs. They are mutually connected with each other. For any positive integer n, <em>φ</em>(<em>n</em>) is an even number. But it is not true for all even...We know Pascal’s triangle and planer graphs. They are mutually connected with each other. For any positive integer n, <em>φ</em>(<em>n</em>) is an even number. But it is not true for all even number, we could find some numbers which would not be the value of any <em>φ</em>(<em>n</em>). The Sum of two odd numbers is one even number. Gold Bach stated “Every even integer greater than 2 can be written as the sum of two primes”. Other than two, all prime numbers are odd numbers. So we can write, every even integer greater than 2 as the sum of two primes. German mathematician Simon Jacob (d. 1564) noted that consecutive Fibonacci numbers converge to the golden ratio. We could find the series which is generated by one and inverse the golden ratio. Also we can note consecutive golden ratio numbers converge to the golden ratio. Lothar Collatz stated integers converge to one. It is also known as 3k + 1 problem. Tao redefined Collatz conjecture as 3k <span style="white-space:nowrap;">−</span> 1 problem. We could not prove it directly but one parallel proof will prove this conjecture.展开更多
The paper resolves the great debate of the 20th century between the three philosophies of mathematics-logicism, intuitionism and formalism—founded by Bertrand Russell and A. N. Whitehead, L. E. J. Brouwer and David H...The paper resolves the great debate of the 20th century between the three philosophies of mathematics-logicism, intuitionism and formalism—founded by Bertrand Russell and A. N. Whitehead, L. E. J. Brouwer and David Hilbert, respectively. The issue: which one provides firm foundations for mathematics? None of them won the debate. We make a critique of each, consolidate their contributions, rectify their weakness and add our own to resolve the debate. The resolution forms the new foundations of mathematics. Then we apply the new foundations to assess the status of Hilbert’s 23 problems most of which in foundations and find out which ones have been solved, which ones have flawed solutions that we rectify and which ones are open problems. Problem 6 of Hilbert’s problems—Can physics be axiomatized?—is answered yes in E. E. Escultura, Nonlinear Analysis, A-Series: 69(2008), which provides the solution, namely, the grand unified theory (GUT). We also point to the resolution of the 379-year-old Fermat’s conjecture (popularly known as Fermat’s last theorem) in E. E. Escultura, Exact Solutions of Fermat’s Equations (Definitive Resolution of Fermat’s Last Theorem), Nonlinear Studies, 5(2), (1998). Likewise, the proof of the 274-year-old Goldbach’s conjecture is in E. E. Escultura, The New Mathematics and Physics, Applied Mathematics and Computation, 138(1), 2003.展开更多
The union of the straight and—of the over a point of reflection—reflected union of the series of the arithmetic progression of primes results the double density of occupation of integer positions by multiples of the...The union of the straight and—of the over a point of reflection—reflected union of the series of the arithmetic progression of primes results the double density of occupation of integer positions by multiples of the primes. The remaining free positions represent diads of equidistant primes to the point of reflection: in case the point of reflection is an even number, they satisfy Goldbach’s conjecture. Further, it allows to prove, that the number of twin primes is unlimited. The number of all greater gaps as two between primes has well defined lower limit functions as well: it is evaluated with the local density of diads, multiplied with the total of the density of no-primes of all positions over the distance between the components of the diads (the size of the gaps). The infinity of these lower limit functions proves the infinity of the number of gaps of any size between primes. The connection of the infinite number of diads to the infinity of the number of gaps of any size is the aim of the paper.展开更多
The union of the straight and over the point of reflection—reflected series of the arithmetic progression of primes results in the double density of occupation of integer positions. It is shown that the number of fre...The union of the straight and over the point of reflection—reflected series of the arithmetic progression of primes results in the double density of occupation of integer positions. It is shown that the number of free positions left by the double density of occupation has a lower limit function, which is growing to infinity. The free positions represent equidistant primes to the point of reflection: in case the point of reflection is an even number, they satisfy Goldbach’s conjecture. The double density allows proving as well that at any distance from the origin large enough—the distance between primes is smaller, than the square root of the distance to the origin. Therefore, the series of primes represent a continuum and may be integrated. Furthermore, it allows proving that the largest gap between primes is growing to infinity with the distance and that the number of any two primes, with a given even number as the distance between them, is unlimited. Thus, the number of twin primes is unlimited as well.展开更多
The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The ma...The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The main conclusion revolves entirely around two points. First, on the one hand, it is shown that the prime sequence exhibits an extremely high level of organization. But second, on the other hand, it is also shown that the clearly detectable organization of the primes is ultimately beyond human comprehension. This conclusion runs radically counter and opposite—in regard to both points—to what may well be the default view held widely, if not universally, in current theoretical mathematics about the prime sequence, namely the following. First, on the one hand, the prime sequence is deemed by all appearance to be entirely random, not organized at all. Second, on the other hand, all hope has not been abandoned that the sequence may perhaps at some point be grasped by human cognition, even if no progress at all has been made in this regard. Current mathematical research seems to be entirely predicated on keeping this hope alive. In the present paper, it is proposed that there is no reason to hope, as it were. According to this point of view, theoretical mathematics needs to take a drastic 180-degree turn. The manner of demonstration that will be used is direct and empirical. Two key observations are adduced showing, 1), how the prime sequence is highly organized and, 2), how this organization transcends human intelligence because it plays out in the dimension of infinity and in relation to π. The present paper is part of a larger project whose design it is to present a complete and final mathematical and physical theory of rational human intelligence. Nothing seems more self-evident than that rational human intelligence is subject to absolute limitations. The brain is a material and physically finite tool. Everyone will therefore readily agree that, as far as reasoning is concerned, there are things that the brain can do and things that it cannot do. The search is therefore for the line that separates the two, or the limits beyond which rational human intelligence cannot go. It is proposed that the structure of the prime sequence lies beyond those limits. The contemplation of the prime sequence teaches us something deeply fundamental about the human condition. It is part of the quest to Know Thyself.展开更多
文摘This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.
文摘This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conjecture is transformed to prove that, for any odd prime sequence (3, 5, 7, <span style="font-size:12px;white-space:nowrap;">…</span>, <em>P<sub>n</sub></em>), there must have no LiKe sequence when the terms must be less than 3 <span style="font-size:12px;white-space:nowrap;">×</span> <em>P<sub>n</sub></em>. This method only studies prime numbers and corresponding composite numbers, replaced the relationship between even numbers and indeterminate prime numbers. In order to illustrate the importance of the idea of transforming the addition problem into the multiplication problem, we take the twin prime conjecture as an example and know there must exist twin primes in the interval [3<em>P<sub>n</sub></em>, <span><em>P</em></span><sup>2</sup><sub style="margin-left:-8px;"><em>n</em></sub>]. This idea is very important for the study of Goldbach conjecture and twin prime conjecture. It’s worth further study.
基金the National Natural Science Foundation of China(11401050)Scientific Research Innovation Team Project Affiliated to Yangtze Normal University(2016XJTD01)。
文摘In this paper,we consider the generalized Moser-type inequalities,sayφ(n)≥kπ(n),where k is an integer greater than 1,φ(n)is Euler function andπ(n)is the prime counting function.Using computer,Pierre Dusart’s inequality onπ(n)and Rosser-Schoenfeld’s inequality involvingφ(n),we give all solutions ofφ(n)=2π(n)andφ(n)=3π(n),respectively.Moreover,we obtain the best lower bound that Moser-type inequalitiesφ(n)>kπ(n)hold for k=2,3.As consequences,we show that every even integer greater than 210 is the sum of two coprime composite,every odd integer greater than 175 is the sum of three pairwise coprime odd composite numbers,and every odd integer greater than 53 can be represented as p+x+y,where p is prime,x and y are composite numbers satisfying that p,and x and y are pairwise coprime.Specially,we give a new equivalent form of Strong Goldbach Conjecture.
文摘This paper demonstrates that Marshall’s logic on the supply and demand curve is not rigorous enough,that Coase’s theorem is flawed,and that the“Okishio Theorem”and Sweezy s logic are inadequate through empirical proof.By the way,the Goldbach conjecture is proved through clever mathematical proof.It shows that beautiful curves and mathematical formulas cannot be separated from reality and logic,and correct logic can play a correct role in market theory.In this paper,the analysis of the actual supply and demand curve,as well as the concepts and models of tax,profit rate and income,has positive practical significance for economic depression and stagflation.
文摘In this paper,a formula is given. The formula gives the number of prime number solutions of the indefinite equation p 1+p 2=2n , and based on it, an equivalent proposition to the conjecture of Goldbach is obtained.
文摘The famous strongly binary Goldbach’s conjecture asserts that every even number 2n ≥ 8 can always be expressible as a sum of two distinct odd prime numbers. We use a new approach to dealing with this conjecture. Specifically, we apply the element order prime graphs of alternating groups of degrees 2n and 2n −1 to characterize this conjecture, and present its six group-theoretic versions;and further prove that this conjecture is true for p +1 and p −1 whenever p ≥ 11 is a prime number.
文摘The present paper gives the proof of the set of primes as a continuum. It starts with the density of the primes, and shortly recapitulates the prime-number-formula and the complete-prime-number-formula. Reflecting the series of the primes over any prime gives the double density of occupation of integer positions by the union of the series of multiples of the primes. The remaining free positions render it possible to prove Goldbach’s conjecture and the set of primes as a continuum. The theoretical evaluation is followed in annexes by numerical evaluation, demonstrating the theoretical results. The numerical evaluation results in different constants and relations, which represent inherent properties of the set of primes.
文摘The present paper gives the proof of the set of primes as continuum and evaluates the analytical formula for the integral of the inverse of the primes over the distance. First it starts with the density of the primes, shortly recapitulates the prime-number-formula and the complete-prime-number-formula, the proof of the set of primes as continuum. The theoretical evaluation is followed in annexes by numerical evaluation of the theoretical results and of different constants, which represent inherent properties of the set of primes.
文摘We know Pascal’s triangle and planer graphs. They are mutually connected with each other. For any positive integer n, <em>φ</em>(<em>n</em>) is an even number. But it is not true for all even number, we could find some numbers which would not be the value of any <em>φ</em>(<em>n</em>). The Sum of two odd numbers is one even number. Gold Bach stated “Every even integer greater than 2 can be written as the sum of two primes”. Other than two, all prime numbers are odd numbers. So we can write, every even integer greater than 2 as the sum of two primes. German mathematician Simon Jacob (d. 1564) noted that consecutive Fibonacci numbers converge to the golden ratio. We could find the series which is generated by one and inverse the golden ratio. Also we can note consecutive golden ratio numbers converge to the golden ratio. Lothar Collatz stated integers converge to one. It is also known as 3k + 1 problem. Tao redefined Collatz conjecture as 3k <span style="white-space:nowrap;">−</span> 1 problem. We could not prove it directly but one parallel proof will prove this conjecture.
文摘The paper resolves the great debate of the 20th century between the three philosophies of mathematics-logicism, intuitionism and formalism—founded by Bertrand Russell and A. N. Whitehead, L. E. J. Brouwer and David Hilbert, respectively. The issue: which one provides firm foundations for mathematics? None of them won the debate. We make a critique of each, consolidate their contributions, rectify their weakness and add our own to resolve the debate. The resolution forms the new foundations of mathematics. Then we apply the new foundations to assess the status of Hilbert’s 23 problems most of which in foundations and find out which ones have been solved, which ones have flawed solutions that we rectify and which ones are open problems. Problem 6 of Hilbert’s problems—Can physics be axiomatized?—is answered yes in E. E. Escultura, Nonlinear Analysis, A-Series: 69(2008), which provides the solution, namely, the grand unified theory (GUT). We also point to the resolution of the 379-year-old Fermat’s conjecture (popularly known as Fermat’s last theorem) in E. E. Escultura, Exact Solutions of Fermat’s Equations (Definitive Resolution of Fermat’s Last Theorem), Nonlinear Studies, 5(2), (1998). Likewise, the proof of the 274-year-old Goldbach’s conjecture is in E. E. Escultura, The New Mathematics and Physics, Applied Mathematics and Computation, 138(1), 2003.
文摘The union of the straight and—of the over a point of reflection—reflected union of the series of the arithmetic progression of primes results the double density of occupation of integer positions by multiples of the primes. The remaining free positions represent diads of equidistant primes to the point of reflection: in case the point of reflection is an even number, they satisfy Goldbach’s conjecture. Further, it allows to prove, that the number of twin primes is unlimited. The number of all greater gaps as two between primes has well defined lower limit functions as well: it is evaluated with the local density of diads, multiplied with the total of the density of no-primes of all positions over the distance between the components of the diads (the size of the gaps). The infinity of these lower limit functions proves the infinity of the number of gaps of any size between primes. The connection of the infinite number of diads to the infinity of the number of gaps of any size is the aim of the paper.
文摘The union of the straight and over the point of reflection—reflected series of the arithmetic progression of primes results in the double density of occupation of integer positions. It is shown that the number of free positions left by the double density of occupation has a lower limit function, which is growing to infinity. The free positions represent equidistant primes to the point of reflection: in case the point of reflection is an even number, they satisfy Goldbach’s conjecture. The double density allows proving as well that at any distance from the origin large enough—the distance between primes is smaller, than the square root of the distance to the origin. Therefore, the series of primes represent a continuum and may be integrated. Furthermore, it allows proving that the largest gap between primes is growing to infinity with the distance and that the number of any two primes, with a given even number as the distance between them, is unlimited. Thus, the number of twin primes is unlimited as well.
文摘The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The main conclusion revolves entirely around two points. First, on the one hand, it is shown that the prime sequence exhibits an extremely high level of organization. But second, on the other hand, it is also shown that the clearly detectable organization of the primes is ultimately beyond human comprehension. This conclusion runs radically counter and opposite—in regard to both points—to what may well be the default view held widely, if not universally, in current theoretical mathematics about the prime sequence, namely the following. First, on the one hand, the prime sequence is deemed by all appearance to be entirely random, not organized at all. Second, on the other hand, all hope has not been abandoned that the sequence may perhaps at some point be grasped by human cognition, even if no progress at all has been made in this regard. Current mathematical research seems to be entirely predicated on keeping this hope alive. In the present paper, it is proposed that there is no reason to hope, as it were. According to this point of view, theoretical mathematics needs to take a drastic 180-degree turn. The manner of demonstration that will be used is direct and empirical. Two key observations are adduced showing, 1), how the prime sequence is highly organized and, 2), how this organization transcends human intelligence because it plays out in the dimension of infinity and in relation to π. The present paper is part of a larger project whose design it is to present a complete and final mathematical and physical theory of rational human intelligence. Nothing seems more self-evident than that rational human intelligence is subject to absolute limitations. The brain is a material and physically finite tool. Everyone will therefore readily agree that, as far as reasoning is concerned, there are things that the brain can do and things that it cannot do. The search is therefore for the line that separates the two, or the limits beyond which rational human intelligence cannot go. It is proposed that the structure of the prime sequence lies beyond those limits. The contemplation of the prime sequence teaches us something deeply fundamental about the human condition. It is part of the quest to Know Thyself.