If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers...If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers with primes, during the prime factorization, may be viewed as being the outcome of a parallel system which functions properly if and only if Euler’s formula of the product of the reciprocals of the primes is true. An exact formula for the number of primes less than or equal to an arbitrary bound is given. This formula may be implemented using Wolfram’s computer package Mathematica.展开更多
The present paper gives the proof of the set of primes as a continuum. It starts with the density of the primes, and shortly recapitulates the prime-number-formula and the complete-prime-number-formula. Reflecting the...The present paper gives the proof of the set of primes as a continuum. It starts with the density of the primes, and shortly recapitulates the prime-number-formula and the complete-prime-number-formula. Reflecting the series of the primes over any prime gives the double density of occupation of integer positions by the union of the series of multiples of the primes. The remaining free positions render it possible to prove Goldbach’s conjecture and the set of primes as a continuum. The theoretical evaluation is followed in annexes by numerical evaluation, demonstrating the theoretical results. The numerical evaluation results in different constants and relations, which represent inherent properties of the set of primes.展开更多
The present paper gives the proof of the set of primes as continuum and evaluates the analytical formula for the integral of the inverse of the primes over the distance. First it starts with the density of the primes,...The present paper gives the proof of the set of primes as continuum and evaluates the analytical formula for the integral of the inverse of the primes over the distance. First it starts with the density of the primes, shortly recapitulates the prime-number-formula and the complete-prime-number-formula, the proof of the set of primes as continuum. The theoretical evaluation is followed in annexes by numerical evaluation of the theoretical results and of different constants, which represent inherent properties of the set of primes.展开更多
This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conj...This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conjecture is transformed to prove that, for any odd prime sequence (3, 5, 7, <span style="font-size:12px;white-space:nowrap;">…</span>, <em>P<sub>n</sub></em>), there must have no LiKe sequence when the terms must be less than 3 <span style="font-size:12px;white-space:nowrap;">×</span> <em>P<sub>n</sub></em>. This method only studies prime numbers and corresponding composite numbers, replaced the relationship between even numbers and indeterminate prime numbers. In order to illustrate the importance of the idea of transforming the addition problem into the multiplication problem, we take the twin prime conjecture as an example and know there must exist twin primes in the interval [3<em>P<sub>n</sub></em>, <span><em>P</em></span><sup>2</sup><sub style="margin-left:-8px;"><em>n</em></sub>]. This idea is very important for the study of Goldbach conjecture and twin prime conjecture. It’s worth further study.展开更多
文摘If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers with primes, during the prime factorization, may be viewed as being the outcome of a parallel system which functions properly if and only if Euler’s formula of the product of the reciprocals of the primes is true. An exact formula for the number of primes less than or equal to an arbitrary bound is given. This formula may be implemented using Wolfram’s computer package Mathematica.
文摘The present paper gives the proof of the set of primes as a continuum. It starts with the density of the primes, and shortly recapitulates the prime-number-formula and the complete-prime-number-formula. Reflecting the series of the primes over any prime gives the double density of occupation of integer positions by the union of the series of multiples of the primes. The remaining free positions render it possible to prove Goldbach’s conjecture and the set of primes as a continuum. The theoretical evaluation is followed in annexes by numerical evaluation, demonstrating the theoretical results. The numerical evaluation results in different constants and relations, which represent inherent properties of the set of primes.
文摘The present paper gives the proof of the set of primes as continuum and evaluates the analytical formula for the integral of the inverse of the primes over the distance. First it starts with the density of the primes, shortly recapitulates the prime-number-formula and the complete-prime-number-formula, the proof of the set of primes as continuum. The theoretical evaluation is followed in annexes by numerical evaluation of the theoretical results and of different constants, which represent inherent properties of the set of primes.
文摘This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conjecture is transformed to prove that, for any odd prime sequence (3, 5, 7, <span style="font-size:12px;white-space:nowrap;">…</span>, <em>P<sub>n</sub></em>), there must have no LiKe sequence when the terms must be less than 3 <span style="font-size:12px;white-space:nowrap;">×</span> <em>P<sub>n</sub></em>. This method only studies prime numbers and corresponding composite numbers, replaced the relationship between even numbers and indeterminate prime numbers. In order to illustrate the importance of the idea of transforming the addition problem into the multiplication problem, we take the twin prime conjecture as an example and know there must exist twin primes in the interval [3<em>P<sub>n</sub></em>, <span><em>P</em></span><sup>2</sup><sub style="margin-left:-8px;"><em>n</em></sub>]. This idea is very important for the study of Goldbach conjecture and twin prime conjecture. It’s worth further study.