期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Phase Transitions Governed by the Fifth Power of the Golden Mean and Beyond 被引量:5
1
作者 Hans Hermann Otto 《World Journal of Condensed Matter Physics》 2020年第3期135-158,共24页
In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio <i><span style="font-family:Verdana;... In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio <i><span style="font-family:Verdana;">φ</span></i><span style="font-family:Verdana;"> respectively its fifth power </span><i><span style="font-family:Verdana;">φ</span></i><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;">. The research fields cover model calculations of statistical physics associated with phase transitions, the quantum probability of two particles, new physics of everything suggested by the information relativity theory (</span><i><span style="font-family:Verdana;">IRT</span></i><span style="font-family:Verdana;">) including explanations of cosmological relevance, the </span><i><span style="font-family:Verdana;">ε</span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">infinity theory, superconductivity, and the </span><i><span style="font-family:Verdana;">Tammes</span></i><span style="font-family:Verdana;"> problem of the largest diameter of </span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;"> non-overlapping circles on the surface of a sphere with its connection to viral morphology and crystallography. Finally, </span><i><span style="font-family:Verdana;">Fibo</span><span style="font-family:Verdana;">nacci</span></i><span style="font-family:Verdana;"> anyons proposed for topological quantum</span><span style="font-family:Verdana;"> computation (</span><i><span style="font-family:Verdana;">TQC</span></i><span style="font-family:Verdana;">) were briefly described in comparison to the recently formulated reverse </span><i><span style="font-family:Verdana;">Fibonacci</span></i><span style="font-family:Verdana;"> approach using the </span><span style="font-family:Verdana;"><em>Jani</em></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="white-space:nowrap;"><em>&#269;</em></span><em>ko</em></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> number sequence. An architecture applicable for a quantum computer is proposed consisting of 13-step twisted microtubules similar to tubulin microtubules of living matter. Most topics point to the omnipresence of the golden mean as the numerical dominator of our world.</span></span></span> 展开更多
关键词 golden mean Phase Transitions Hard-Hexagon Respectively Hard-Square Gas Model Quantum Probability Information Relativity Theory (IRT) ε-Infinity Theory Superconductivity Tammes Problem Viral Morphology Helical Microtubules Janičko Number Sequence Topological Quantum Computation Fibonacci Lattice CRYSTALLOGRAPHY
下载PDF
Golden Quartic Polynomial and Moebius-Ball Electron 被引量:5
2
作者 Hans Hermann Otto 《Journal of Applied Mathematics and Physics》 2022年第5期1785-1812,共28页
A symmetrical quartic polynomial, named golden one, can be connected to coefficients of the icosahedron equation as well as to the gyromagnetic correction of the electron and to number 137. This number is not a mystic... A symmetrical quartic polynomial, named golden one, can be connected to coefficients of the icosahedron equation as well as to the gyromagnetic correction of the electron and to number 137. This number is not a mystic one, but is connected with the inverse of Sommerfeld’s fine-structure constant and this way again connected with the electron. From number-theoretical realities, including the reciprocity relation of the golden ratio as effective pre-calculator of nature’s creativeness, a proposed closeness to the icosahedron may point towards the structure of the electron, thought off as a single-strand compacted helically self-confined charged elemantary particle of less spherical but assumed blunted icosahedral shape generated from a high energy double-helix photon. We constructed a chiral Moebius “ball” from a 13 times 180&#730;twisted double helix strand, where the turning points of 12 generated slings were arranged towards the vertices of a regular icosahedron, belonging to the non-centrosymmetric rotation group I532. Mathematically put, we convert the helical motion of an energy quantum into a stationary motion on a Moebius stripe structure. The radius of the ball is about the Compton radius. This chiral closed circuit Moebius ball motion profile can be tentatively thought off as the dominant quantum vortex structure of the electron, and the model may be named CEWMB (Charged Electromagnetic Wave Moebius Ball). Also the gyromagnetic factor of the electron (g<sub>e</sub> = 2.002319) can be traced back to this special structure. However, nature’s energy infinity principle would suggest a superposition with additional less dominant (secondary) structures, governed also by the golden mean. A suggestion about the possible structure of delocalized hole carriers in the superconducting state is given. 展开更多
关键词 golden Qartic Polynomial Number Theory Icosahedron Equation golden mean Fifth Power of the golden mean Moebius Ball Electron Structure CHIRALITY Fine-Structure Constant Fibonacci Number 13 Lucas Numbers SUPERCONDUCTIVITY
下载PDF
High Energy Physics and Cosmology as Computation 被引量:3
3
作者 Mohamed S. El Naschie 《American Journal of Computational Mathematics》 2016年第3期185-199,共16页
The present paper is basically written as a non-apologetic strong defence of the thesis that computation is part and parcel of a physical theory and by no means a mere numerical evaluation of the prediction of a theor... The present paper is basically written as a non-apologetic strong defence of the thesis that computation is part and parcel of a physical theory and by no means a mere numerical evaluation of the prediction of a theory which comes towards the end. Various general considerations as well as specific examples are given to illustrate and support our arguments. These examples range from the practical aspect to almost esoteric considerations but at the end, everything converges towards a unity of theory and computation presented in the form of modern fractal logic and transfinite quantum field theory in a Cantorian spacetime. It is true that all our examples are taken from physics but our discussion is applicable in equal measure to a much wider aspect of life. 展开更多
关键词 Fractal Logic E-Infinity Theory Cantorian-Fractal Spacetime P. Erdos A. Turing computer Transfinite Turing Machine A. Connes Noncommutative Geometry von Neumann Continuous Geometry golden mean computer Pointless Geometry Fuzzy Sets Fuzzy Logic
下载PDF
Kähler Dark Matter, Dark Energy Cosmic Density and Their Coupling 被引量:2
4
作者 Mohamed S. El Naschie 《Journal of Modern Physics》 2016年第14期1953-1962,共11页
We utilize homology and co-homology of a K3-K&#228;hler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) or... We utilize homology and co-homology of a K3-K&#228;hler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) ordinary energy;2) pure dark energy and 3) dark matter. In addition, the fundamental coupling of dark matter to pure dark energy is analyzed in detail for the first time. Finally, the so-obtained results are shown to be in astounding agreement with all previous theoretical analysis as well as with actual accurate cosmic measurements. 展开更多
关键词 Kähler Topology Dark Matter E-INFINITY Super Strings golden mean computer Kerr Black Hole Geometry Accelerated Cosmic Expansion Fractal Cantorian Spacetime
下载PDF
From E=mc^(2) to E=mc^(2)/22—A Short Account of the Most Famous Equation in Physics and Its Hidden Quantum Entanglement Origin
5
作者 Mohamed S.El Naschie 《Journal of Quantum Information Science》 2014年第4期284-291,共8页
Einstein’s energy mass formula is shown to consist of two basically quantum components E(O) = mc2/22 and E(D) = mc2(21/22). We give various arguments and derivations to expose the quantum entanglement physics residin... Einstein’s energy mass formula is shown to consist of two basically quantum components E(O) = mc2/22 and E(D) = mc2(21/22). We give various arguments and derivations to expose the quantum entanglement physics residing inside a deceptively simple expression E = mc2. The true surprising aspect of the present work is however the realization that all the involved “physics” in deriving the new quantum dissection of Einstein’s famous formula of special relativity is actually a pure mathematical necessity anchored in the phenomena of volume concentration of convex manifold in high dimensional quasi Banach spaces. Only an endophysical experiment encompassing the entire universe such as COBE, WMAP, Planck and supernova analysis could have discovered dark energy and our present dissection of Einstein’s marvelous formula. 展开更多
关键词 Special Relativity Varying Speed of Light Hardy’s Quantum Entanglement Dark Energy Measure Concentration in Banach Space ‘tHooft Fractal Spacetime Witten Fractal M-Theory E-Infinity Theory Transfinite Cellular Automata golden mean computer Endophysics Finkelstein-Rossler-Primas Theory of Interface
下载PDF
A Different Approach to High-Tc Superconductivity: Indication of Filamentary-Chaotic Conductance and Possible Routes to Room Temperature Superconductivity 被引量:9
6
作者 Hans Hermann Otto 《World Journal of Condensed Matter Physics》 CAS 2016年第3期244-260,共18页
The empirical relation of between the transition temperature of optimum doped superconductors T<sub>co</sub> and the mean cationic charge , a physical paradox, can be recast to strongly support fractal the... The empirical relation of between the transition temperature of optimum doped superconductors T<sub>co</sub> and the mean cationic charge , a physical paradox, can be recast to strongly support fractal theories of high-T<sub>c</sub> superconductors, thereby applying the finding that the optimum hole concentration of σ<sub>o</sub> = 0.229 can be linked with the universal fractal constant δ<sub>1</sub> = 8.72109… of the renormalized quadratic Hénon map. The transition temperature obviously increases steeply with a domain structure of ever narrower size, characterized by Fibonacci numbers. However, also conventional BCS superconductors can be scaled with δ<sub>1</sub>, exemplified through the energy gap relation k<sub>B</sub>T<sub>c</sub> ≈ 5Δ<sub>0</sub>/δ<sub>1</sub>, suggesting a revision of the entire theory of superconductivity. A low mean cationic charge allows the development of a frustrated nano-sized fractal structure of possibly ferroelastic nature delivering nano-channels for very fast charge transport, in common for both high-T<sub>c</sub> superconductor and organic-inorganic halide perovskite solar materials. With this backing superconductivity above room temperature can be conceived for synthetic sandwich structures of less than 2+. For instance, composites of tenorite and cuprite respectively tenorite and CuI (CuBr, CuCl) onto AuCu alloys are proposed. This specification is suggested by previously described filamentary superconductivity of “bulk” CuO1﹣x samples. In addition, cesium substitution in the Tl-1223 compound is an option. 展开更多
关键词 SUPERCONDUCTIVITY Fractals Chaos Feigenbaum Numbers Fibonacci Numbers golden mean Ferroelastic Domains mean Cationic Charge Perovskites CUPRATES TENORITE CUPRITE Cesium Substitution Solar Power Conversion Efficiency
下载PDF
Magic Numbers of the Great Pyramid: A Surprising Result 被引量:2
7
作者 Hans Hermann Otto 《Journal of Applied Mathematics and Physics》 2020年第10期2063-2071,共9页
Recently attention has been drawn to the frequently observed fifth power of the golden mean in many disciplines of science and technology. Whereas in a forthcoming contribution the focus will be directed towards <i... Recently attention has been drawn to the frequently observed fifth power of the golden mean in many disciplines of science and technology. Whereas in a forthcoming contribution the focus will be directed towards <i>Fibonacci</i> number-based helical structures of living as well as inorganic matter, in this short letter the geometry of the Great Pyramid of the ancient Egyptians was investigated once more. The surprising main result is that the ratio of the in-sphere volume of the pyramid and the pyramid volume itself is given by π&#8901;<i>φ</i><sup>5</sup>, where <i>φ</i> = 0.618033987<span style="white-space:nowrap;">&#8901;<span style="white-space:nowrap;">&#8901;</span><span style="white-space:nowrap;">&#8901;</span></span> is nature’s most important number, the golden mean. In this way not only phase transitions from microscopic to cosmic scale are connected with <i>φ</i><sup>5</sup>, also ingenious ancient builders have intuitively guessed its magic before. 展开更多
关键词 Geometry Great Pyramid In-Sphere Volume golden mean Fifth Power of golden mean Fibonacci Number 13 Curious Angel Arcsin (φ5)
下载PDF
Beyond a Quartic Polynomial Modeling of the DNA Double-Helix Genetic Code 被引量:3
8
作者 Hans Hermann Otto 《Journal of Applied Mathematics and Physics》 2021年第10期2558-2577,共20页
By combination of finite number theory and quantum information, the complete quantum information in the <em>DNA</em> genetic code has been made likely by <em>Planat et al</em>. (2020). In the p... By combination of finite number theory and quantum information, the complete quantum information in the <em>DNA</em> genetic code has been made likely by <em>Planat et al</em>. (2020). In the present contribution a varied quartic polynomial contrasting the polynomial used by <em>Planat et al</em>. is proposed that considered apart from the golden mean also the fifth power of this dominant number of nature to adapt the code information. The suggested polynomial is denoted as <em>g</em>(<em>x</em>) = <em>x</em><sup>4</sup> - <em>x</em><sup>3</sup> - (4 - <em><i style="white-space:normal;">&#981;</i></em><sup>2</sup> )<em>x</em><sup>2</sup> + (4 – <i>&#981;</i><sup>2</sup>)x + 1, where <img src="Edit_40efe764-d690-499f-8424-129f9ca46f78.bmp" alt="" /> is the golden mean. Its roots are changed to more golden mean based ones in comparison to the <em>Planat</em> polynomial. The new coefficients 4 – <em>&#981;</em><sup>2</sup> instead of 4 would implement the fifth power of the golden mean indirectly applying <img src="Edit_5b44b644-3f59-4fad-a586-ec5345ba6be4.bmp" alt="" />. As an outlook, it should be emphesized that the connection between genetic code and resonance code of the <em>DNA</em> may lead us to a full understanding of how nature stores and processes compacted information and what indeed is consciousness linking everything with each other suggestedly mediated by all-pervasive dark constituents of matter respectively energy. The number-theoretical approach to <em>DNA</em> coding leads to the question about the helical structure of the electron. 展开更多
关键词 DNA Genetic Code DNA Resonance Code Qartic Polymial golden mean Silver mean Fifth Power of the golden mean Fiboacci Number 13 α-Helix Icosahedron Equation Number Theory Quantum Computation Consciousness Dark Energy Electron’s Structure
下载PDF
Ratio of In-Sphere Volume to Polyhedron Volume of the Great Pyramid Compared to Selected Convex Polyhedral Solids 被引量:3
9
作者 Hans Hermann Otto 《Journal of Applied Mathematics and Physics》 2021年第1期41-56,共16页
The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em>&... The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em><sub><em>V</em></sub> = π <span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8901;</span></span> <em><em style="white-space:normal;">φ</em></em><sup>5</sup>, where <img src="Edit_83decbce-7252-44ed-a822-fef13e43fd2a.bmp" alt="" /> is the golden mean. It is important that the number <em>φ</em><sup>5</sup> is a fundamental constant of nature describing phase transition from microscopic to cosmic scale. In this contribution the relatively small volume ratio of the Great Pyramid was compared to that of selected convex polyhedral solids such as the <em>Platonic </em>solids respectively the face-rich truncated icosahedron (bucky ball) as one of <em>Archimedes</em>’ solids leading to effective filling of the polyhedron by its in-sphere and therefore the highest volume ratio of the selected examples. The smallest ratio was found for the Great Pyramid. A regression analysis delivers the highly reliable volume ratio relation <img src="Edit_79e766ce-5580-4ae0-a706-570e0f3f1bd8.bmp" alt="" />, where <em>nF</em> represents the number of polyhedron faces and b approximates the silver mean. For less-symmetrical solids with a unique axis (tetragonal pyramids) the in-sphere can be replaced by a biaxial ellipsoid of maximum volume to adjust the <em>R</em><sub><em>V</em></sub> relation more reliably. 展开更多
关键词 POLYHEDRON Great Pyramid Platonic Solids Volume-Area Ratio In-Sphere and In-Ellipsoid Polyhedral Void Space golden and Silver mean
下载PDF
Einstein’s Dark Energy via Similarity Equivalence, ‘tHooft Dimensional Regularization and Lie Symmetry Groups 被引量:4
10
作者 Mohamed S. El Naschie 《International Journal of Astronomy and Astrophysics》 2016年第1期56-81,共26页
Realizing the physical reality of ‘tHooft’s self similar and dimensionaly regularized fractal-like spacetime as well as being inspired by a note worthy anecdote involving the great mathematician of Alexandria, Pytha... Realizing the physical reality of ‘tHooft’s self similar and dimensionaly regularized fractal-like spacetime as well as being inspired by a note worthy anecdote involving the great mathematician of Alexandria, Pythagoras and the larger than life man of theoretical physics Einstein, we utilize some deep mathematical connections between equivalence classes of equivalence relations and E-infinity theory quotient space. We started from the basic principles of self similarity which came to prominence in science with the advent of the modern theory of nonlinear dynamical systems, deterministic chaos and fractals. This fundamental logico-mathematical thread related to partially ordered sets is then applied to show how the classical Newton’s kinetic energy E = 1/2mv<sup>2</sup> leads to Einstein’s celebrated maximal energy equation E = mc<sup>2</sup> and how in turn this can be dissected into the ordinary energy density E(O) = mc<sup>2</sup>/22 and the dark energy density E(D) = mc<sup>2</sup>(21/22) of the cosmos where m is the mass;v is the velocity and c is the speed of light. The important role of the exceptional Lie symmetry groups and ‘tHooft-Veltman-Wilson dimensional regularization in fractal spacetime played in the above is also highlighted. The author hopes that the unusual character of the analysis and presentation of the present work may be taken in a positive vein as seriously attempting to propose a different and new way of doing theoretical physics by treating number theory, set theory, group theory, experimental physics as well as conventional theoretical physics on the same footing and letting all these diverse tools lead us to the answer of fundamental questions without fear of being labelled in one way or another. 展开更多
关键词 Equivalence Relation SCALING Intermediate Asymptotic golden mean Scaling Einstein Self Similarity Fractal Scaling E-INFINITY Special Relativity Random Cantor Sets ‘tHooft Regularization Fractal Quantum Field Quantum Gravity Exceptional Lie Symmetry Groups
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部