Harris hawks optimization(HHO)algorithm is an efficient method of solving function optimization problems.However,it is still confronted with some limitations in terms of low precision,low convergence speed and stagnat...Harris hawks optimization(HHO)algorithm is an efficient method of solving function optimization problems.However,it is still confronted with some limitations in terms of low precision,low convergence speed and stagnation to local optimum.To this end,an improved HHO(IHHO)algorithm based on good point set and nonlinear convergence formula is proposed.First,a good point set is used to initialize the positions of the population uniformly and randomly in the whole search area.Second,a nonlinear exponential convergence formula is designed to balance exploration stage and exploitation stage of IHHO algorithm,aiming to find all the areas containing the solutions more comprehensively and accurately.The proposed IHHO algorithm tests 17 functions and uses Wilcoxon test to verify the effectiveness.The results indicate that IHHO algorithm not only has faster convergence speed than other comparative algorithms,but also improves the accuracy of solution effectively and enhances its robustness under low dimensional and high dimensional conditions.展开更多
锅炉燃烧优化在电厂锅炉经济稳定运行中起着重要作用,NO_(x)排放预测是其中的一个基本环节,因此提出了一种基于改进蜣螂优化算法优化卷积神经网络(convolutional neural network,CNN)与双向长短期记忆神经网络(long short term memory,L...锅炉燃烧优化在电厂锅炉经济稳定运行中起着重要作用,NO_(x)排放预测是其中的一个基本环节,因此提出了一种基于改进蜣螂优化算法优化卷积神经网络(convolutional neural network,CNN)与双向长短期记忆神经网络(long short term memory,LSTM)的组合模型超参数的超超临界锅炉NO_(x)排放预测的方法。首先通过Pearson相关性判定与NO_(x)排放相关的特征参数;其次建立CNN-LSTM预测模型,利用卷积神经网络CNN提取分层数据结构,长短期记忆网络挖掘长期依赖关系,然后结合佳点集、t分布变异策略对蜣螂算法进行改进,用改进后的算法对LSTM超参数进行优化得到最终预测模型;最后与其他神经网络模型进行对比验证。以某660 MW机组锅炉深度调峰实际数据进行预测,结果得到NO_(x)排放浓度实际值与预测值的平均绝对误差为3.3516,平均相对误差为2.4667,数据结果表明该预测模型具有更准确的预测效果。展开更多
A multi-strategy hybrid whale optimization algorithm(MSHWOA)for complex constrained optimization problems is proposed to overcome the drawbacks of easily trapping into local optimum,slow convergence speed and low opti...A multi-strategy hybrid whale optimization algorithm(MSHWOA)for complex constrained optimization problems is proposed to overcome the drawbacks of easily trapping into local optimum,slow convergence speed and low optimization precision.Firstly,the population is initialized by introducing the theory of good point set,which increases the randomness and diversity of the population and lays the foundation for the global optimization of the algorithm.Then,a novel linearly update equation of convergence factor is designed to coordinate the abilities of exploration and exploitation.At the same time,the global exploration and local exploitation capabilities are improved through the siege mechanism of Harris Hawks optimization algorithm.Finally,the simulation experiments are conducted on the 6 benchmark functions and Wilcoxon rank sum test to evaluate the optimization performance of the improved algorithm.The experimental results show that the proposed algorithm has more significant improvement in optimization accuracy,convergence speed and robustness than the comparison algorithm.展开更多
基金supported by the National Natural Science Foundation of China(61872126)。
文摘Harris hawks optimization(HHO)algorithm is an efficient method of solving function optimization problems.However,it is still confronted with some limitations in terms of low precision,low convergence speed and stagnation to local optimum.To this end,an improved HHO(IHHO)algorithm based on good point set and nonlinear convergence formula is proposed.First,a good point set is used to initialize the positions of the population uniformly and randomly in the whole search area.Second,a nonlinear exponential convergence formula is designed to balance exploration stage and exploitation stage of IHHO algorithm,aiming to find all the areas containing the solutions more comprehensively and accurately.The proposed IHHO algorithm tests 17 functions and uses Wilcoxon test to verify the effectiveness.The results indicate that IHHO algorithm not only has faster convergence speed than other comparative algorithms,but also improves the accuracy of solution effectively and enhances its robustness under low dimensional and high dimensional conditions.
文摘锅炉燃烧优化在电厂锅炉经济稳定运行中起着重要作用,NO_(x)排放预测是其中的一个基本环节,因此提出了一种基于改进蜣螂优化算法优化卷积神经网络(convolutional neural network,CNN)与双向长短期记忆神经网络(long short term memory,LSTM)的组合模型超参数的超超临界锅炉NO_(x)排放预测的方法。首先通过Pearson相关性判定与NO_(x)排放相关的特征参数;其次建立CNN-LSTM预测模型,利用卷积神经网络CNN提取分层数据结构,长短期记忆网络挖掘长期依赖关系,然后结合佳点集、t分布变异策略对蜣螂算法进行改进,用改进后的算法对LSTM超参数进行优化得到最终预测模型;最后与其他神经网络模型进行对比验证。以某660 MW机组锅炉深度调峰实际数据进行预测,结果得到NO_(x)排放浓度实际值与预测值的平均绝对误差为3.3516,平均相对误差为2.4667,数据结果表明该预测模型具有更准确的预测效果。
基金the National Natural Science Foundation of China(No.62176146)。
文摘A multi-strategy hybrid whale optimization algorithm(MSHWOA)for complex constrained optimization problems is proposed to overcome the drawbacks of easily trapping into local optimum,slow convergence speed and low optimization precision.Firstly,the population is initialized by introducing the theory of good point set,which increases the randomness and diversity of the population and lays the foundation for the global optimization of the algorithm.Then,a novel linearly update equation of convergence factor is designed to coordinate the abilities of exploration and exploitation.At the same time,the global exploration and local exploitation capabilities are improved through the siege mechanism of Harris Hawks optimization algorithm.Finally,the simulation experiments are conducted on the 6 benchmark functions and Wilcoxon rank sum test to evaluate the optimization performance of the improved algorithm.The experimental results show that the proposed algorithm has more significant improvement in optimization accuracy,convergence speed and robustness than the comparison algorithm.