This paper presents a novel genetic algorithm for globally solving un-constraint optimization problem.In this algorithm,a new real coded crossover operator is proposed firstly.Furthermore,for improving the convergence...This paper presents a novel genetic algorithm for globally solving un-constraint optimization problem.In this algorithm,a new real coded crossover operator is proposed firstly.Furthermore,for improving the convergence speed and the searching ability of our algorithm,the good point set theory rather than random selection is used to generate the initial population,and the chaotic search operator is adopted in the best solution of the current iteration.The experimental results tested on numerical benchmark functions show that this algorithm has excellent solution quality and convergence characteristics,and performs better than some algorithms.展开更多
为改善分布式电源(Distributed Generation,DG)并入电网后配电网重构算法的性能,提出一种基于佳点集的蜜蜂进化型遗传算法(Bee Evolutionary Genetic Algorithm Based on Good Point Set,GBEGA)。该算法的关键有三点:1.提出一种基于佳...为改善分布式电源(Distributed Generation,DG)并入电网后配电网重构算法的性能,提出一种基于佳点集的蜜蜂进化型遗传算法(Bee Evolutionary Genetic Algorithm Based on Good Point Set,GBEGA)。该算法的关键有三点:1.提出一种基于佳点集的种群初始化方法,该方法比随机方法产生的种群在搜索空间更为均匀;2.引进佳点集交叉算子,该算子能在父代附近进行更加精细的搜索;3.采用自适应的交叉变异概率,有利于算法开采与勘探的平衡。将DG处理为PQ、PV两种模型,并将GBEGA与相关文献中的算法关于IEEE33和IEEE69节点系统进行了对比测试。仿真结果表明,GBEGA适合于含DG的配电网重构,在全局寻优能力和收敛速度上表现出色。展开更多
首先根据实际问题分析了物流配送网络优化模型的各个关键组成部分,包括优化目标、决策变量和约束条件,并针对目前物流配送网络优化算法中存在的一些问题提出了一种新的算法,其核心是佳点集遗传算法。该算法编码采用prufer num ber结构,...首先根据实际问题分析了物流配送网络优化模型的各个关键组成部分,包括优化目标、决策变量和约束条件,并针对目前物流配送网络优化算法中存在的一些问题提出了一种新的算法,其核心是佳点集遗传算法。该算法编码采用prufer num ber结构,变异和交叉概率自适应选择。展开更多
基金supported by the National Natural Science Foundation NSFC(11671122)the Key Project of Henan Educational Committee(19A110021.19A510014).
文摘This paper presents a novel genetic algorithm for globally solving un-constraint optimization problem.In this algorithm,a new real coded crossover operator is proposed firstly.Furthermore,for improving the convergence speed and the searching ability of our algorithm,the good point set theory rather than random selection is used to generate the initial population,and the chaotic search operator is adopted in the best solution of the current iteration.The experimental results tested on numerical benchmark functions show that this algorithm has excellent solution quality and convergence characteristics,and performs better than some algorithms.
文摘为改善分布式电源(Distributed Generation,DG)并入电网后配电网重构算法的性能,提出一种基于佳点集的蜜蜂进化型遗传算法(Bee Evolutionary Genetic Algorithm Based on Good Point Set,GBEGA)。该算法的关键有三点:1.提出一种基于佳点集的种群初始化方法,该方法比随机方法产生的种群在搜索空间更为均匀;2.引进佳点集交叉算子,该算子能在父代附近进行更加精细的搜索;3.采用自适应的交叉变异概率,有利于算法开采与勘探的平衡。将DG处理为PQ、PV两种模型,并将GBEGA与相关文献中的算法关于IEEE33和IEEE69节点系统进行了对比测试。仿真结果表明,GBEGA适合于含DG的配电网重构,在全局寻优能力和收敛速度上表现出色。