期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Boosting the Electrochemical Performance of Li-and Mn-Rich Cathodes by a Three-in-One Strategy 被引量:2
1
作者 Wei He Fangjun Ye +9 位作者 Jie Lin Qian Wang Qingshui Xie Fei Pei Chenying Zhang Pengfei Liu Xiuwan Li Laisen Wang Baihua Qu Dong-Liang Peng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期311-321,共11页
There are plenty of issues need to be solved before the practi-cal application of Li-and Mn-rich cathodes,including the detrimental voltage decay and mediocre rate capability,etc.Element doping can e ectively solve th... There are plenty of issues need to be solved before the practi-cal application of Li-and Mn-rich cathodes,including the detrimental voltage decay and mediocre rate capability,etc.Element doping can e ectively solve the above problems,but cause the loss of capacity.The introduction of appropriate defects can compensate the capacity loss;however,it will lead to structural mismatch and stress accumulation.Herein,a three-in-one method that combines cation–polyanion co-doping,defect construction,and stress engineering is pro-posed.The co-doped Na^(+)/SO_(4)^(2-)can stabilize the layer framework and enhance the capacity and voltage stability.The induced defects would activate more reac-tion sites and promote the electrochemical performance.Meanwhile,the unique alternately distributed defect bands and crystal bands structure can alleviate the stress accumulation caused by changes of cell parameters upon cycling.Consequently,the modified sample retains a capacity of 273 mAh g^(-1)with a high-capacity retention of 94.1%after 100 cycles at 0.2 C,and 152 mAh g^(-1)after 1000 cycles at 2 C,the corresponding voltage attenuation is less than 0.907 mV per cycle. 展开更多
关键词 Li-and Mn-rich cathodes Cation–polyanion co-doping Defect and stress engineering Good structure stability Electrochemical performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部