期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Google云平台的ERP系统的设计与实现 被引量:5
1
作者 林清滢 冯健文 陆锡聪 《电脑知识与技术》 2014年第5X期3554-3557,共4页
针对传统ERP系统不易扩展、重复建设、成本高、难以满足中小型企业需求等问题,设计并提出基于云计算的ERP系统体系结构。并构建Google App Engine(GAE)云平台开发环境,以此实现一个可扩展的、服务可重用的、按需付费的、低成本的云计算... 针对传统ERP系统不易扩展、重复建设、成本高、难以满足中小型企业需求等问题,设计并提出基于云计算的ERP系统体系结构。并构建Google App Engine(GAE)云平台开发环境,以此实现一个可扩展的、服务可重用的、按需付费的、低成本的云计算ERP系统,从而满足中小型企业的信息化需求。 展开更多
关键词 google app engine 云计算 ERP
下载PDF
Geoprocessing in Cloud Computing platforms-a comparative analysis
2
作者 Peng Yue Hongxiu Zhou +1 位作者 Jianya Gong Lei Hu 《International Journal of Digital Earth》 SCIE EI 2013年第4期404-425,共22页
The emergence of Cloud Computing technologies brings a new information infrastructure to users.Providing geoprocessing functions in Cloud Computing platforms can bring scalable,on-demand,and costeffective geoprocessi... The emergence of Cloud Computing technologies brings a new information infrastructure to users.Providing geoprocessing functions in Cloud Computing platforms can bring scalable,on-demand,and costeffective geoprocessing services to geospatial users.This paper provides a comparative analysis of geoprocessing in Cloud Computing platformsMicrosoft Windows Azure and Google App Engine.The analysis compares differences in the data storage,architecture model,and development environment based on the experience to develop geoprocessing services in the two Cloud Computing platforms;emphasizes the importance of virtualization;recommends applications of hybrid geoprocessing Clouds,and suggests an interoperable solution on geoprocessing Cloud services.The comparison allows one to selectively utilize Cloud Computing platforms or hybrid Cloud pattern,once it is understood that the current development of geoprocessing Cloud services is restricted to specific Cloud Computing platforms with certain kinds of technologies.The performance evaluation is also performed over geoprocessing services deployed in public Cloud platforms.The tested services are developed using geoprocessing algorithms from different vendors,GeoSurf and Java Topology Suite.The evaluation results provide a valuable reference on providing elastic and cost-effective geoprocessing Cloud services. 展开更多
关键词 GEOPROCESSING Cloud computing geospatial service GIS Microsoft Azure google app engine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部