期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Gorenstein ( L , A )- 投射模的稳定性
1
作者 罗宏蓉 陈文静 《吉林大学学报(理学版)》 CAS 北大核心 2024年第6期1296-1300,共5页
设R是有单位元的交换环,(L,A)是完备的对偶对.先引入一种相对于完备对偶对(L,A)的Gore nstein同调模类GP(2)L,再研究GP(2)L的一些性质.最后,借助一些特殊的模类证明GP(2)L与Gorenstein(L,A)-投射模类一致.
关键词 gorenstein(l A)-投射模 稳定性 gorenstein平坦模 正合序列 对偶对
下载PDF
Generalized Gorenstein Modules 被引量:1
2
作者 Alina Iacob 《Algebra Colloquium》 SCIE CSCD 2022年第4期651-662,共12页
We introduce a generalization of the Gorenstein injective modules:the Gorenstein FPn-injective modules(denoted by GI_(n)).They are the cycles of the exact complexes of injective modules that remain exact when we apply... We introduce a generalization of the Gorenstein injective modules:the Gorenstein FPn-injective modules(denoted by GI_(n)).They are the cycles of the exact complexes of injective modules that remain exact when we apply a functor Hom(A,-),with A any FP_(n)-injective module.Thus,GL_(o)is the class of classical Gorenstein injective modules,and GI_(1)is the class of Ding injective modules.We prove that over any ring R,for any n≥2,the class GI_(n)is the right half of a perfect cotorsion pair,and therefore it is an enveloping class.For n=1 we show that GI_(1)(i.e.,the Ding injectives)forms the right half of a hereditary cotorsion pair.If moreover the ring R is coherent,then the Ding injective modules form an enveloping class.We also define the dual notion,that of Gorenstein FP_(n)-projectives(denoted by GP_(n)).They generalize the Ding projective modules,and so,the Gorenstein projective modules.We prove that for any n≥2 the class GP_(n)is the left half of a complete hereditary cotorsion pair,and therefore it is special precovering. 展开更多
关键词 gorenstein FP_(n)-injective modules gorenstein FP_(n)-projective modules Ding injective modules Ding projective modules
原文传递
The Right Gorenstein Subcategory rg(l,D)
3
作者 Zeng Hui GAO Wan WU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第2期339-362,共24页
In this paper,we generalize the idea of Song,Zhao and Huang[Czechoslov.Math.J.,70,483±504(2020)]and introduce the notion of right(left)Gorenstein subcategory rg(l,∂)(lg(l,D)),relative to two additive full subcate... In this paper,we generalize the idea of Song,Zhao and Huang[Czechoslov.Math.J.,70,483±504(2020)]and introduce the notion of right(left)Gorenstein subcategory rg(l,∂)(lg(l,D)),relative to two additive full subcategoriesφand∂of an abelian category A.Under the assumption thatφ⊆∂,we prove that the right Gorenstein subcategory rg(l,D)possesses many nice properties that it is closed under extensions,kernels of epimorphisms and direct summands.Whenφ⊆Dandφ⊥D,we show that the right Gorenstein subcategory rg(l,D)admits some kind of stability.Then we discuss a resolution dimension for an object in A,called rg(l,D)-projective dimension.Finally,we prove that if(U,V)is a hereditary cotorsion pair with kernelφhas enough injectives,such that U⊆Dand U⊥∂,then(rg(l,D),φφ)is a weak Auslander±Buchweitz context,whereφis the subcategory of A consisting of objects with finiteφ-projective dimension. 展开更多
关键词 Right gorenstein subcategory rg(l D)-projective dimension cotorsion pair weak Auslander-Buchweitz context
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部