In this paper, we study some properties of n-strongly Gorenstein projective,injective and flat modules, and discuss some connections between n-strongly Gorenstein injective, projective and flat modules. Some applicati...In this paper, we study some properties of n-strongly Gorenstein projective,injective and flat modules, and discuss some connections between n-strongly Gorenstein injective, projective and flat modules. Some applications are given.展开更多
In this paper,we introduce Gorenstein weak injective and weak flat modules in terms of,respectively,weak injective and weak flat modules;the classes of Gorenstein weak injective and weak flat modules are larger than t...In this paper,we introduce Gorenstein weak injective and weak flat modules in terms of,respectively,weak injective and weak flat modules;the classes of Gorenstein weak injective and weak flat modules are larger than the classical classes of Gorenstein injective and flat modules.In this new setting,we characterize rings over which all modules are Gorenstein weak injective.Moreover,we discuss the relation between the weak cosyzygy and Gorenstein weak cosyzygy of a module,and also the stability of Gorenstein weak injective modules.展开更多
The notion of DG-Gorenstein injective complexes is studied in this article.It is shown that a complex G is DG-Gorenstein injective if and only if G is exact with Z_(n)(G)Gorenstein injective in R-Mod for each n∈Zand ...The notion of DG-Gorenstein injective complexes is studied in this article.It is shown that a complex G is DG-Gorenstein injective if and only if G is exact with Z_(n)(G)Gorenstein injective in R-Mod for each n∈Zand any morphism f:E→G is null homotopic whenever E is a DG-injective complex.展开更多
Using Nucinkis's injective complete cohomological functors, we assign a numerical invariant to each group P, called the injective complete cohomological dimension of F, denoted by iccd P. We study this dimension and ...Using Nucinkis's injective complete cohomological functors, we assign a numerical invariant to each group P, called the injective complete cohomological dimension of F, denoted by iccd P. We study this dimension and investigate its properties. Also, we define the Gorenstein injective dimension of the group F, which is denoted by Gid F. We show that Gid F is related to iccd F, as well as to spli and silp invariants of Gedrich and Gruenberg. In particular, it is shown that iccd P is a refinement of Gid P. In addition, we show that silp F = spli F 〈 ∞if and only if the Shapiro lemma holds for injective complete cohomology.展开更多
For a given class of modules A,let A be the class of exact complexes having all cycles in A,and dw(A)the class of complexes with all components in A.Denote by GL the class of Gorenstein injective modules.We prove that...For a given class of modules A,let A be the class of exact complexes having all cycles in A,and dw(A)the class of complexes with all components in A.Denote by GL the class of Gorenstein injective modules.We prove that the following are equivalent over any ring R:every exact complex of injective modules is totally acyclic;every exact complex of Gorenstein injective modules is in every complex in dw(GL)is dg-Gorenstein injective.The analogous result for complexes of flat and Gorenstein flat modules also holds over arb计rary rings.If the ring is n-perfect for some integer n≥0,the three equivalent statements for flat and Gorenstein flat modules are equivalent with their counterparts for projective and projectively coresolved Gorenstein flat modules.We also prove the following characterization of Gorenstein rings.Let R be a commutative coherent ring;then the following are equivalent:(1)every exact complex of FP-injective modules has all its cycles Ding injective modules;(2)every exact complex of flat modules is F-totally acyclic,and every R-modulc M such that M^(+)is Gorenstein flat is Ding injective;(3)every exact complex of injectives has all its cycles Ding injective modules and every R-module M such that is Gorenstein flat is Ding injective.If R has finite Krull dimension,statements(1)-(3)are equivalent to(4)R is a Gorenstein ring(in the sense of Iwanaga).展开更多
基金Supported by the National Natural Science Foundation of China(11361051) Supported by the Program for New Century Excellent the Talents in University(NCET-13-0957)
文摘In this paper, we study some properties of n-strongly Gorenstein projective,injective and flat modules, and discuss some connections between n-strongly Gorenstein injective, projective and flat modules. Some applications are given.
基金This work was partially supported by NSFC(Grant Nos.11571164 and 11571341).
文摘In this paper,we introduce Gorenstein weak injective and weak flat modules in terms of,respectively,weak injective and weak flat modules;the classes of Gorenstein weak injective and weak flat modules are larger than the classical classes of Gorenstein injective and flat modules.In this new setting,we characterize rings over which all modules are Gorenstein weak injective.Moreover,we discuss the relation between the weak cosyzygy and Gorenstein weak cosyzygy of a module,and also the stability of Gorenstein weak injective modules.
基金This work was supported by the National Natural Science Foundation of China(grant no.11501451)the Funds for Talent Introduction of Northwest Minzu University(grant no.XBMUYJRC201406).
文摘The notion of DG-Gorenstein injective complexes is studied in this article.It is shown that a complex G is DG-Gorenstein injective if and only if G is exact with Z_(n)(G)Gorenstein injective in R-Mod for each n∈Zand any morphism f:E→G is null homotopic whenever E is a DG-injective complex.
文摘Using Nucinkis's injective complete cohomological functors, we assign a numerical invariant to each group P, called the injective complete cohomological dimension of F, denoted by iccd P. We study this dimension and investigate its properties. Also, we define the Gorenstein injective dimension of the group F, which is denoted by Gid F. We show that Gid F is related to iccd F, as well as to spli and silp invariants of Gedrich and Gruenberg. In particular, it is shown that iccd P is a refinement of Gid P. In addition, we show that silp F = spli F 〈 ∞if and only if the Shapiro lemma holds for injective complete cohomology.
基金S.Estrada was partly supported by grant MTM2016-77445-PFEDER funds and by grant 19880/GERM/15 from the Fundacion Seneca-Agencia de Ciencia y Tecnologfa de la Region de Murcia.
文摘For a given class of modules A,let A be the class of exact complexes having all cycles in A,and dw(A)the class of complexes with all components in A.Denote by GL the class of Gorenstein injective modules.We prove that the following are equivalent over any ring R:every exact complex of injective modules is totally acyclic;every exact complex of Gorenstein injective modules is in every complex in dw(GL)is dg-Gorenstein injective.The analogous result for complexes of flat and Gorenstein flat modules also holds over arb计rary rings.If the ring is n-perfect for some integer n≥0,the three equivalent statements for flat and Gorenstein flat modules are equivalent with their counterparts for projective and projectively coresolved Gorenstein flat modules.We also prove the following characterization of Gorenstein rings.Let R be a commutative coherent ring;then the following are equivalent:(1)every exact complex of FP-injective modules has all its cycles Ding injective modules;(2)every exact complex of flat modules is F-totally acyclic,and every R-modulc M such that M^(+)is Gorenstein flat is Ding injective;(3)every exact complex of injectives has all its cycles Ding injective modules and every R-module M such that is Gorenstein flat is Ding injective.If R has finite Krull dimension,statements(1)-(3)are equivalent to(4)R is a Gorenstein ring(in the sense of Iwanaga).