With the help of electron back scattering diffraction techniques and field emission microscope, the misorienta- tion and the precipitation environment of Goss grains in conventional grain-oriented steel were observed ...With the help of electron back scattering diffraction techniques and field emission microscope, the misorienta- tion and the precipitation environment of Goss grains in conventional grain-oriented steel were observed and investigated at the initial stage of secondary recrystallization. It reveals that the abnormal Goss grains have a high fraction of high angle boundaries ranging from 25 to 40 deg. The most important observation is that some of {110}〈001〉 grains in matrix indicated higher particle density than their neighbor grains during final annealing at 875℃ before secondary recrystallization, which could create a favorable environment for their abnormal grain growth. Based on misorientation and precipitation results, the abnormal growth mechanism of Goss grains was sketched.展开更多
A Monte Carlo Potts model was developed to simulate the recrystallization process of a cold-rolled ultra-thin grain-oriented silicon steel.The orientation and image quality data from electron backscatter diffraction m...A Monte Carlo Potts model was developed to simulate the recrystallization process of a cold-rolled ultra-thin grain-oriented silicon steel.The orientation and image quality data from electron backscatter diffraction measurements were used as input information for simulation.Three types of nucleation mechanisms,namely,random nucleation,high-stored-energy site nucleation(HSEN),and high-angle boundary nucleation(HABN),were considered for simulation.In particular,the nucleation and growth behaviors of Goss-oriented({011}<100>)grains were investigated.Results showed that Goss grains had a nucleation advantage in HSEN and HABN.The amount of Goss grains was the highest according to HABN,and it matched the experimental measurement.However,Goss grains lacked a size advantage across all mechanisms during the recrystallization process.展开更多
Fe-3%Si取向硅钢在高温退火过程中Goss取向晶粒异常长大行为的影响因素及机制一直是研究的热点。本文采用改进的Monte Carlo Potts模型对这一现象进行了模拟仿真研究,新模型考虑了晶界能和晶界迁移率的各向异性,设第二相粒子在基体中随...Fe-3%Si取向硅钢在高温退火过程中Goss取向晶粒异常长大行为的影响因素及机制一直是研究的热点。本文采用改进的Monte Carlo Potts模型对这一现象进行了模拟仿真研究,新模型考虑了晶界能和晶界迁移率的各向异性,设第二相粒子在基体中随机分布,同时引入参数P表示晶粒在长大过程中被第二相粒子钉扎住的面积百分数。模拟的初始组织来自于脱碳退火后试样EBSD取向数据。EBSD结果表明,初次再结晶组织中Goss取向晶粒没有尺寸优势和数量优势。模拟结果表明,Goss取向晶粒异常长大现象的出现与P值的大小有着紧密的联系,P值越大,Goss取向晶粒越容易发生异常长大。展开更多
结合鞍钢开发的厚度0.27 mm HiB取向硅钢的经验,研究了热轧、常化、冷轧、脱碳退火、高温退火等工序微观组织、织构的变化和演变规律。结果表明:热轧浅表层的组织为再结晶组织,中心层为未完全再结晶的带状组织,常化后均发生再结晶和再...结合鞍钢开发的厚度0.27 mm HiB取向硅钢的经验,研究了热轧、常化、冷轧、脱碳退火、高温退火等工序微观组织、织构的变化和演变规律。结果表明:热轧浅表层的组织为再结晶组织,中心层为未完全再结晶的带状组织,常化后均发生再结晶和再结晶组织的长大,取向硅钢的组织在冷轧和脱碳退火后转变为铁素体的等轴晶粒,经过二次再结晶后,Goss织构晶粒成长为毫米级的大晶粒。热轧浅表层是Goss{110}〈001〉织构的发源地,经过常化后Goss织构原位加强,冷轧后Goss织构转变为{111}〈112〉且部分残留在变形剪切带处,从而在二次再结晶时,形成了以Goss织构为主要织构组分的HiB取向硅钢。展开更多
In this study, high- and low-grade grain-oriented electrical steels were used as the initial materials to produce 0.08-mm-thick sheet with one-step cold-rolling method. Electron backscattering diffraction analysis tec...In this study, high- and low-grade grain-oriented electrical steels were used as the initial materials to produce 0.08-mm-thick sheet with one-step cold-rolling method. Electron backscattering diffraction analysis technique and X-ray diffraction texture analysis technique were adopted to investigate the effect of initial Goss texture sharpness on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The results showed that primary recrystal- lization and secondary recrystallization were the main processes that occurred during annealing. The induced factors for secondary recrystallization of two grades samples were not Consistent. The high-grade samples presented texture induction mechanism, while the low-grade samples revealed strong surface-energy induction mechanism. The initial Goss texture sharpness had a great impact on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The Goss texture component formed after primary recrystallization was stronger, and better magnetic properties were obtained at low frequencies. For low-grade samples, secondary recrystallization enhanced the intensity of Goss texture, and both grain size and texture contributed to better high-frequency magnetic properties after secondary recrystallization. By controlling the annealing process, the magnetic properties of low-grade products could be significantly improved, thus achieving conversion from low-grade to high-grade products.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.50871015)
文摘With the help of electron back scattering diffraction techniques and field emission microscope, the misorienta- tion and the precipitation environment of Goss grains in conventional grain-oriented steel were observed and investigated at the initial stage of secondary recrystallization. It reveals that the abnormal Goss grains have a high fraction of high angle boundaries ranging from 25 to 40 deg. The most important observation is that some of {110}〈001〉 grains in matrix indicated higher particle density than their neighbor grains during final annealing at 875℃ before secondary recrystallization, which could create a favorable environment for their abnormal grain growth. Based on misorientation and precipitation results, the abnormal growth mechanism of Goss grains was sketched.
基金The authors acknowledge the financial support from the National Key Research and Development Program of China(No.2017YFB0903901).
文摘A Monte Carlo Potts model was developed to simulate the recrystallization process of a cold-rolled ultra-thin grain-oriented silicon steel.The orientation and image quality data from electron backscatter diffraction measurements were used as input information for simulation.Three types of nucleation mechanisms,namely,random nucleation,high-stored-energy site nucleation(HSEN),and high-angle boundary nucleation(HABN),were considered for simulation.In particular,the nucleation and growth behaviors of Goss-oriented({011}<100>)grains were investigated.Results showed that Goss grains had a nucleation advantage in HSEN and HABN.The amount of Goss grains was the highest according to HABN,and it matched the experimental measurement.However,Goss grains lacked a size advantage across all mechanisms during the recrystallization process.
文摘Fe-3%Si取向硅钢在高温退火过程中Goss取向晶粒异常长大行为的影响因素及机制一直是研究的热点。本文采用改进的Monte Carlo Potts模型对这一现象进行了模拟仿真研究,新模型考虑了晶界能和晶界迁移率的各向异性,设第二相粒子在基体中随机分布,同时引入参数P表示晶粒在长大过程中被第二相粒子钉扎住的面积百分数。模拟的初始组织来自于脱碳退火后试样EBSD取向数据。EBSD结果表明,初次再结晶组织中Goss取向晶粒没有尺寸优势和数量优势。模拟结果表明,Goss取向晶粒异常长大现象的出现与P值的大小有着紧密的联系,P值越大,Goss取向晶粒越容易发生异常长大。
文摘结合鞍钢开发的厚度0.27 mm HiB取向硅钢的经验,研究了热轧、常化、冷轧、脱碳退火、高温退火等工序微观组织、织构的变化和演变规律。结果表明:热轧浅表层的组织为再结晶组织,中心层为未完全再结晶的带状组织,常化后均发生再结晶和再结晶组织的长大,取向硅钢的组织在冷轧和脱碳退火后转变为铁素体的等轴晶粒,经过二次再结晶后,Goss织构晶粒成长为毫米级的大晶粒。热轧浅表层是Goss{110}〈001〉织构的发源地,经过常化后Goss织构原位加强,冷轧后Goss织构转变为{111}〈112〉且部分残留在变形剪切带处,从而在二次再结晶时,形成了以Goss织构为主要织构组分的HiB取向硅钢。
基金financially supported by the National High Technology Research and Development Program of China(Grant No.2012AA03A505)
文摘In this study, high- and low-grade grain-oriented electrical steels were used as the initial materials to produce 0.08-mm-thick sheet with one-step cold-rolling method. Electron backscattering diffraction analysis technique and X-ray diffraction texture analysis technique were adopted to investigate the effect of initial Goss texture sharpness on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The results showed that primary recrystal- lization and secondary recrystallization were the main processes that occurred during annealing. The induced factors for secondary recrystallization of two grades samples were not Consistent. The high-grade samples presented texture induction mechanism, while the low-grade samples revealed strong surface-energy induction mechanism. The initial Goss texture sharpness had a great impact on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The Goss texture component formed after primary recrystallization was stronger, and better magnetic properties were obtained at low frequencies. For low-grade samples, secondary recrystallization enhanced the intensity of Goss texture, and both grain size and texture contributed to better high-frequency magnetic properties after secondary recrystallization. By controlling the annealing process, the magnetic properties of low-grade products could be significantly improved, thus achieving conversion from low-grade to high-grade products.