Soil alkali-hydrolyzable nitrogen, which is sensitive to N fertilization rate, is one of the indicators of soil nitrogen supplying capacity. Two field experiments were conducted in Dongtai(120°19″ E, 32°52...Soil alkali-hydrolyzable nitrogen, which is sensitive to N fertilization rate, is one of the indicators of soil nitrogen supplying capacity. Two field experiments were conducted in Dongtai(120°19″ E, 32°52″ N), Jiangsu, China in 2009 and Dafeng(120°28″ E, 33°12″ N), Jiangsu province, China in 2010. Six nitrogen rates(0, 150, 300, 375, 450, and 600 kg ha^(-1)) were used to study the effect of N fertilization rate on soil alkali-hydrolyzable nitrogen content(SAHNC), subtending leaf nitrogen concentration(SLNC), yield, and fiber quality. In both Dongtai and Dafeng experiment station, the highest yield(1709 kg ha^(-1)), best quality(fiber length 30.6 mm, fiber strength 31.6 c N tex^(-1), micronaire 4.82), and highest N agronomic efficiency(2.03 kg kg^(-1)) were achieved at the nitrogen fertilization rate of 375 kg ha^(-1). The dynamics of SAHNC and SLNC could be simulated with a cubic and an exponential function,respectively. The changes in SAHNC were consistent with the changes in SLNC. Optimal average rate(0.276 mg day^(-1)) and duration(51.8 days) of SAHNC rapid decline were similar to the values obtained at the nitrogen rate of 375 kg ha^(-1)at which cotton showed highest fiber yield, quality, and N agronomic efficiency. Thus, the levels and strategies of nitrogen fertilization can affect SAHNC dynamics. The N fertilization rate that optimizes soil alkali-hydrolyzable nitrogen content would optimize the subtending leaf nitrogen concentration and thereby increase the yield and quality of the cotton fiber.展开更多
基金funded by the National Key Technology R&D Program of China (No. 2014BAD11B02)the Special Fund for Agro-scientific Research in the Public Interest (No. 201203096)+1 种基金the National Natural Science Foundation of China (Nos. 31401327, 30971735)the China Agriculture Research System (No. CARS-18-20)
文摘Soil alkali-hydrolyzable nitrogen, which is sensitive to N fertilization rate, is one of the indicators of soil nitrogen supplying capacity. Two field experiments were conducted in Dongtai(120°19″ E, 32°52″ N), Jiangsu, China in 2009 and Dafeng(120°28″ E, 33°12″ N), Jiangsu province, China in 2010. Six nitrogen rates(0, 150, 300, 375, 450, and 600 kg ha^(-1)) were used to study the effect of N fertilization rate on soil alkali-hydrolyzable nitrogen content(SAHNC), subtending leaf nitrogen concentration(SLNC), yield, and fiber quality. In both Dongtai and Dafeng experiment station, the highest yield(1709 kg ha^(-1)), best quality(fiber length 30.6 mm, fiber strength 31.6 c N tex^(-1), micronaire 4.82), and highest N agronomic efficiency(2.03 kg kg^(-1)) were achieved at the nitrogen fertilization rate of 375 kg ha^(-1). The dynamics of SAHNC and SLNC could be simulated with a cubic and an exponential function,respectively. The changes in SAHNC were consistent with the changes in SLNC. Optimal average rate(0.276 mg day^(-1)) and duration(51.8 days) of SAHNC rapid decline were similar to the values obtained at the nitrogen rate of 375 kg ha^(-1)at which cotton showed highest fiber yield, quality, and N agronomic efficiency. Thus, the levels and strategies of nitrogen fertilization can affect SAHNC dynamics. The N fertilization rate that optimizes soil alkali-hydrolyzable nitrogen content would optimize the subtending leaf nitrogen concentration and thereby increase the yield and quality of the cotton fiber.