期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Gowers norms and pseudorandom measures of subsets
1
作者 Huaning LIU Yuchan QI 《Frontiers of Mathematics in China》 SCIE CSCD 2022年第2期289-313,共25页
Let A ■ ■_(N),and f_(A)(s)={1-|A/N,-|A|/N,for s ∈A,for s■ A.We define the pseudorandom measure of order k of the subset A as follows,P _(k)(A,N)=max D|∑n∈■_(N)|f_(A)(n+c_(1))f_(A)(n+c_(2))…f_(A)(n+c_(k))|where... Let A ■ ■_(N),and f_(A)(s)={1-|A/N,-|A|/N,for s ∈A,for s■ A.We define the pseudorandom measure of order k of the subset A as follows,P _(k)(A,N)=max D|∑n∈■_(N)|f_(A)(n+c_(1))f_(A)(n+c_(2))…f_(A)(n+c_(k))|where the maximum is taken over all D=(c_(1),c_(2),…,C_(K))∈■^(k) with 0≤c_(1)<c_(2)<…ck≤N-1.The subset A ■ ■_(N) is considered as a pseudorandom subset of degree k if P_(k)(A,N)is“small”in terms of N.We establish a link be tween the Gowers norm and our pseudorandom measure,and show that“good”pseudorandom subsets must have“small”Gowers norm.We give an example to suggest that subsets with"small" Gowers norm may have large pseudorandom measure.Finally,we prove that the pseudorandom subset of degree L(k)contains an arithmetic progression of length k,where L(k)=2·lcm(2,4,…,2|k/2|),for k≥4,and lcm(a1,a2,…,al)denotes the least common multiple of a1,a2,…,al. 展开更多
关键词 gowers norm pseudorandom measure SUBSET arithmetic progression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部