Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the pro...Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.展开更多
In recent years, West Africa has been confronted with hydro-climatic disasters causing crises in both urban and rural areas. The tragedy in the occurrence of such events lies in the recurrent aspect of high water and ...In recent years, West Africa has been confronted with hydro-climatic disasters causing crises in both urban and rural areas. The tragedy in the occurrence of such events lies in the recurrent aspect of high water and associated floods. The devastating floods observed in Africa’s major rivers have revealed the need to understand the causes of these phenomena and to predict their behavior in order to improve the safety of exposed people and property. The aim of this study is to reproduce flood flows using the GR4J (Rural Engineering Four Daily Parameters) model to analyze flood risk in the Oti watershed in Togo. Daily data on flows (m3/s), potential evapotranspiration (mm/day) and average precipitation (mm) over the basin from 1961-2022 collected at the National Meteorological Agency of Togo (ANAMET) and the Department of Water Resources in Lome, were used with the R software package airGR. The Data from the West African Cordex program from 1961-2100 were used to analyze projected flows. The results obtained show the GR4J model’s effectiveness in reproducing flood flows, indicating that observed flows are well simulated during the calibration and validation periods, with KGE values ranging from 0.73 to 0.85 at calibration and 0.62 to 0.81 at validation. These KGE values reflect the good performance of the GR4J model in simulating flood flows in the watershed. However, a deterioration in the KGE value was observed over the second validation period. Under these conditions, there may be false or missed alerts for flood prediction, and the use of this model should be treated with the utmost caution for decision-support purposes.展开更多
基金supported substantially by the Southwest Jiaotong University for Material and Financial Support。
文摘Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.
文摘In recent years, West Africa has been confronted with hydro-climatic disasters causing crises in both urban and rural areas. The tragedy in the occurrence of such events lies in the recurrent aspect of high water and associated floods. The devastating floods observed in Africa’s major rivers have revealed the need to understand the causes of these phenomena and to predict their behavior in order to improve the safety of exposed people and property. The aim of this study is to reproduce flood flows using the GR4J (Rural Engineering Four Daily Parameters) model to analyze flood risk in the Oti watershed in Togo. Daily data on flows (m3/s), potential evapotranspiration (mm/day) and average precipitation (mm) over the basin from 1961-2022 collected at the National Meteorological Agency of Togo (ANAMET) and the Department of Water Resources in Lome, were used with the R software package airGR. The Data from the West African Cordex program from 1961-2100 were used to analyze projected flows. The results obtained show the GR4J model’s effectiveness in reproducing flood flows, indicating that observed flows are well simulated during the calibration and validation periods, with KGE values ranging from 0.73 to 0.85 at calibration and 0.62 to 0.81 at validation. These KGE values reflect the good performance of the GR4J model in simulating flood flows in the watershed. However, a deterioration in the KGE value was observed over the second validation period. Under these conditions, there may be false or missed alerts for flood prediction, and the use of this model should be treated with the utmost caution for decision-support purposes.