The compressive deformation behavior in the longitudinal direction of graded Ti–6Al–4V meshes fabricated by electron beam melting was investigated using experiments and finite element methods(FEM).The results indi...The compressive deformation behavior in the longitudinal direction of graded Ti–6Al–4V meshes fabricated by electron beam melting was investigated using experiments and finite element methods(FEM).The results indicate that the overall strain along the longitudinal direction is the sum of the net strain carried by each uniform mesh constituent and the deformation behavior fits the Reuss model well. The layer thickness and the sectional area have no effect on the elastic modulus, whereas the strength increases with the sectional area due to the edge effect of each uniform mesh constituent. By optimizing3 D graded/gradient design, meshes with balanced superior properties, such as high strength, energy absorption and low elastic modulus, can be fabricated by electron beam melting.展开更多
基金supported by 863 Project(No.2015AA033702)the National Basic Research Program of China(Nos.2012CB619103,2012CB933901 and 2012CB933902)+1 种基金the National Natural Science Foundation of China(Nos.51271182 and 51271180)the Shandong Provincial Natural Science Foundation,China(No.ZR2014JL031)
文摘The compressive deformation behavior in the longitudinal direction of graded Ti–6Al–4V meshes fabricated by electron beam melting was investigated using experiments and finite element methods(FEM).The results indicate that the overall strain along the longitudinal direction is the sum of the net strain carried by each uniform mesh constituent and the deformation behavior fits the Reuss model well. The layer thickness and the sectional area have no effect on the elastic modulus, whereas the strength increases with the sectional area due to the edge effect of each uniform mesh constituent. By optimizing3 D graded/gradient design, meshes with balanced superior properties, such as high strength, energy absorption and low elastic modulus, can be fabricated by electron beam melting.
基金supported by the National Natural Science Foundation of China(No.51505323)the Applied Basic Research Program of Shanxi Province,China(Nos.20210302123117,20210302124658).
基金National Science and Technology Major Project,China (Nos.2017-VI-0004-0075,J2019-VI-0005-0119)Independent Innovation Special Fund Project of AECC (No.CXPT-2019-030)+1 种基金Stability Program for Basic Materials Research Institutes,China (Nos.2019-0C-4753,CXPT-2020-033)Fundamental Strengthening Program of AECC (No.2021-JCJQ-JJ-0114)for financial support.