在SSIM算法的基础上,结合亮度和对比度掩蔽等视觉感知信息构造视觉感知(visual perception)函数,提出基于视觉感知的梯度结构相似度评价方法VI_GSSIM(visual perception and gradient based SSIM)。该方法通过图像质量与图像内容和失真...在SSIM算法的基础上,结合亮度和对比度掩蔽等视觉感知信息构造视觉感知(visual perception)函数,提出基于视觉感知的梯度结构相似度评价方法VI_GSSIM(visual perception and gradient based SSIM)。该方法通过图像质量与图像内容和失真类型的相关性,结合图像的误差可视性与内容可视性构造视觉感知函数,对HVS底层视觉系统建模;同时利用梯度重新定义结构信息,得到基于视觉感知的梯度结构相似度模型,对图像进行质量评价。实验结果表明,提出的VI_GSSIM算法比SSIM更符合人眼的视觉特性,尤其适合评价降质较严重的图像。展开更多
文摘在SSIM算法的基础上,结合亮度和对比度掩蔽等视觉感知信息构造视觉感知(visual perception)函数,提出基于视觉感知的梯度结构相似度评价方法VI_GSSIM(visual perception and gradient based SSIM)。该方法通过图像质量与图像内容和失真类型的相关性,结合图像的误差可视性与内容可视性构造视觉感知函数,对HVS底层视觉系统建模;同时利用梯度重新定义结构信息,得到基于视觉感知的梯度结构相似度模型,对图像进行质量评价。实验结果表明,提出的VI_GSSIM算法比SSIM更符合人眼的视觉特性,尤其适合评价降质较严重的图像。
文摘针对现有深度图像增强算法存在边界保留特性差的问题,提出梯度掩模导向联合滤波(gradient mask guided joint filter,GMGJF)算法。利用深度图像进行Sobel梯度变换获取边界方向信息,利用深度图像空洞区域生成空洞掩模,再以边界方向和空洞掩模为导向联合彩色图像对深度图像进行迭代高斯滤波和空洞填充。实验结果表明,GMGJF算法的PSNR(peak signal to noise ratio)、SSIM(structural similarity index measure)比IMF(iterative median filter)、GF(guided filter)、JBF(joint bilateral filter)算法的PSNR、SSIM至少提高了3.50%和1.07%,不仅去噪能力、空洞填充能力最强,而且边界特征保持最好,有利于深度图像的特征提取与目标识别。