Gradient cemented carbides with nano-TiN were prepared by the common powder metallurgical procedure. The formation of gradient zone and the microstructure, properties of the alloys were investigated using scanning ele...Gradient cemented carbides with nano-TiN were prepared by the common powder metallurgical procedure. The formation of gradient zone and the microstructure, properties of the alloys were investigated using scanning electron microscope(SEM), energy dispersive spectroscopy(EDS) and other performance testing apparatus. Moreover, the effect of nano-TiN on the gradient cemented carbide was studied. It is found that gradient zone width increases slightly with nano-TiN introduction. Both cobalt and titanium concentrations reach the maximum near the gradient border. Tungsten concentration shows fluctuation from the surface to the bulk. (Ti ,W)C phase grains are refined for nitrogen introduction. Core-rim structure has been observed under the SEM back-scattered mode. The core appears as dark due to more titanium in it and the rim with more tungsten appears as grey. In addition, the hardness and transverse rupture strength of gradient cemented carbide are enhanced with nano-TiN introduced.展开更多
Gradient cemented carbides with the surface depleted in cubic phases were prepared following normal powder metallurgical pro-cedures.Gradient zone formation and the influence of nitrogen introduction methods on the mi...Gradient cemented carbides with the surface depleted in cubic phases were prepared following normal powder metallurgical pro-cedures.Gradient zone formation and the influence of nitrogen introduction methods on the microstructure and performance of the alloys were investigated.The results show that the simple one-step vacuum sintering technique is doable for producing gradient cemented carbides.Gradient structure formation is attributed to the gradient in nitrogen activity during sintering,but is independent from nitrogen introduced methods.A uniform carbon distribution is found throughout the materials.Moreover,the transverse rupture strength of the cemented carbides can be increased by a gradient layer.Different nitrogen carriers give the alloys distinguishing microstructure and mechanical properties,and a gradient alloy with ultrafine-TiC0.5N0.5 is found optimal.展开更多
Gradient cemented carbide is usually employed as the snbstrate for coated carbide insert. In this work, gradient cemented carbide with ultrafine Ti(C0.5,N0.5) was prepared and its microstructure and properties were ...Gradient cemented carbide is usually employed as the snbstrate for coated carbide insert. In this work, gradient cemented carbide with ultrafine Ti(C0.5,N0.5) was prepared and its microstructure and properties were researched. Moreover, this novel substrate was coated to investigate cutting performance. It is found that the average WC grain size in the gradient zone is larger than that in the bulk. Owing to ultrafine Ti(C0.5,N0.5) introduction, gradient cemented carbide prepared by vacuum sintering exhibits full densification. By contrast, the gradient cemented carbide with ultrafine Ti(C0.5,N0.5) shows higher transverse rupture strength (TRS) and hardness than the homogenous one. Gradient cemented carbide suffers small TRS reduction after coating, and the bonding between coatings and gradient substrate is tidy and compact. The coated gradient cemented carbide shows much better endurance and impact resistance than the coated homogenous one. It confirms the superiority of gradient cemented carbide when used as the substrate for coating inserts.展开更多
基金Funded by Research Funds for the Central Universities(No.2011SCU11038)Chengdu Science and Technology Project(Nos.10GGZD080GX-268 and 11DXYB096JH-027)
文摘Gradient cemented carbides with nano-TiN were prepared by the common powder metallurgical procedure. The formation of gradient zone and the microstructure, properties of the alloys were investigated using scanning electron microscope(SEM), energy dispersive spectroscopy(EDS) and other performance testing apparatus. Moreover, the effect of nano-TiN on the gradient cemented carbide was studied. It is found that gradient zone width increases slightly with nano-TiN introduction. Both cobalt and titanium concentrations reach the maximum near the gradient border. Tungsten concentration shows fluctuation from the surface to the bulk. (Ti ,W)C phase grains are refined for nitrogen introduction. Core-rim structure has been observed under the SEM back-scattered mode. The core appears as dark due to more titanium in it and the rim with more tungsten appears as grey. In addition, the hardness and transverse rupture strength of gradient cemented carbide are enhanced with nano-TiN introduced.
基金supported by the Science and Technology Projects of Sichuan Province,China,(No.2008GZ0179)
文摘Gradient cemented carbides with the surface depleted in cubic phases were prepared following normal powder metallurgical pro-cedures.Gradient zone formation and the influence of nitrogen introduction methods on the microstructure and performance of the alloys were investigated.The results show that the simple one-step vacuum sintering technique is doable for producing gradient cemented carbides.Gradient structure formation is attributed to the gradient in nitrogen activity during sintering,but is independent from nitrogen introduced methods.A uniform carbon distribution is found throughout the materials.Moreover,the transverse rupture strength of the cemented carbides can be increased by a gradient layer.Different nitrogen carriers give the alloys distinguishing microstructure and mechanical properties,and a gradient alloy with ultrafine-TiC0.5N0.5 is found optimal.
基金financially supported by the National Natural Science Foundation of China(No.51074110)Research Funds for the Central Universities(No.2011SCU11038)the Chengdu Science and Technology Project(Nos.10GGZD080GX-268 and 11DXYB096JH-027)
文摘Gradient cemented carbide is usually employed as the snbstrate for coated carbide insert. In this work, gradient cemented carbide with ultrafine Ti(C0.5,N0.5) was prepared and its microstructure and properties were researched. Moreover, this novel substrate was coated to investigate cutting performance. It is found that the average WC grain size in the gradient zone is larger than that in the bulk. Owing to ultrafine Ti(C0.5,N0.5) introduction, gradient cemented carbide prepared by vacuum sintering exhibits full densification. By contrast, the gradient cemented carbide with ultrafine Ti(C0.5,N0.5) shows higher transverse rupture strength (TRS) and hardness than the homogenous one. Gradient cemented carbide suffers small TRS reduction after coating, and the bonding between coatings and gradient substrate is tidy and compact. The coated gradient cemented carbide shows much better endurance and impact resistance than the coated homogenous one. It confirms the superiority of gradient cemented carbide when used as the substrate for coating inserts.