We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces.In the algorithm,we use an early stopping technique,instead of the cla...We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces.In the algorithm,we use an early stopping technique,instead of the classical Tikhonov regularization,to prevent the iteration from an overfitting function.Under mild conditions,we obtain upper bounds,essentially matching the known minimax lower bounds,for excess prediction risk.An almost sure convergence is also established for the proposed algorithm.展开更多
Two novel spline adaptive filtering(SAF)algorithms are proposed by combining different iterative gradient methods,i.e.,Adagrad and RMSProp,named SAF-Adagrad and SAF-RMSProp,in this paper.Detailed convergence performan...Two novel spline adaptive filtering(SAF)algorithms are proposed by combining different iterative gradient methods,i.e.,Adagrad and RMSProp,named SAF-Adagrad and SAF-RMSProp,in this paper.Detailed convergence performance and computational complexity analyses are carried out also.Furthermore,compared with existing SAF algorithms,the influence of step-size and noise types on SAF algorithms are explored for nonlinear system identification under artificial datasets.Numerical results show that the SAF-Adagrad and SAFRMSProp algorithms have better convergence performance than some existing SAF algorithms(i.e.,SAF-SGD,SAF-ARC-MMSGD,and SAF-LHC-MNAG).The analysis results of various measured real datasets also verify this conclusion.Overall,the effectiveness of SAF-Adagrad and SAF-RMSProp are confirmed for the accurate identification of nonlinear systems.展开更多
In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared wi...In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples.展开更多
This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative(MIGI) approach is proposed to optimize the distance me...This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative(MIGI) approach is proposed to optimize the distance metric of locally weighted learning(LWL), and a novel non-parametric modeling technique is developed for a nonlinear ship maneuvering system. This proposed method’s advantages are as follows: first, it can avoid the unmodeled dynamics and multicollinearity inherent to the conventional parametric model; second, it eliminates the over-learning or underlearning and obtains the optimal distance metric; and third, the MIGI is not sensitive to the initial parameter value and requires less time during the training phase. These advantages result in a highly accurate mathematical modeling technique that can be conveniently implemented in applications. To verify the characteristics of this mathematical model, two examples are used as the model platforms to study the ship maneuvering.展开更多
How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the...How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the frequency spectrum analysis. According to the analysis results, gravity field model of the optima] degrees 90-240 is given, which is recovered by COCE gradient data. This paper presents an iterative Wiener filtering method based on the gravity gradient invariants. By this method a degree-220 model was calculated from GOCE SGG (Satellite Gravity Gradient) data. The degrees above 90 of ITG2010 were taken as the prior gravity field model, replacing the low degree gravity field model calculated by GOCE orbit data. GOCE gradient colored noises was processed by Wiener filtering. Finally by Wiener filtering iterative calculation, the gravity field model was restored by space-wise harmonic analysis method. The results show that the model's accuracy matched well with the ESA's (European Space Agency) results by using the same data,展开更多
A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. W...A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. With the Lanczos process the OAP creates a sequence of mutually orthogonal vectors, on the basis of which the projections of the unknown vectors are easily obtained, and thus the approximations to the unknown vectors can be simply constructed by a combination of these projections. This method is an application of the accumulated projection technique proposed recently by the authors of this paper, and can be regarded as a match of conjugate gradient method(CG) in its nature since both the CG and the OAP can be regarded as iterative methods, too. Unlike the CG method which can be only used to solve linear systems with symmetric positive definite coefficient matrices, the OAP can be used to handle systems with indefinite symmetric matrices. Unlike classical Krylov subspace methods which usually ignore the issue of loss of orthogonality, OAP uses an effective approach to detect the loss of orthogonality and a restart strategy is used to handle the loss of orthogonality.Numerical experiments are presented to demonstrate the efficiency of the OAP.展开更多
基金supported in part by National Natural Science Foundation of China(Grant No.11871438)supported in part by the HKRGC GRF Nos.12300218,12300519,17201020,17300021,C1013-21GF,C7004-21GFJoint NSFC-RGC N-HKU76921。
文摘We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces.In the algorithm,we use an early stopping technique,instead of the classical Tikhonov regularization,to prevent the iteration from an overfitting function.Under mild conditions,we obtain upper bounds,essentially matching the known minimax lower bounds,for excess prediction risk.An almost sure convergence is also established for the proposed algorithm.
基金supported by the National Natural Science Foundation of China(61871420)the Natural Science Foundation of Sichuan Province,China(23NSFSC2916)the introduction of talent,Southwest MinZu University,China,funding research projects start(RQD2021064).
文摘Two novel spline adaptive filtering(SAF)algorithms are proposed by combining different iterative gradient methods,i.e.,Adagrad and RMSProp,named SAF-Adagrad and SAF-RMSProp,in this paper.Detailed convergence performance and computational complexity analyses are carried out also.Furthermore,compared with existing SAF algorithms,the influence of step-size and noise types on SAF algorithms are explored for nonlinear system identification under artificial datasets.Numerical results show that the SAF-Adagrad and SAFRMSProp algorithms have better convergence performance than some existing SAF algorithms(i.e.,SAF-SGD,SAF-ARC-MMSGD,and SAF-LHC-MNAG).The analysis results of various measured real datasets also verify this conclusion.Overall,the effectiveness of SAF-Adagrad and SAF-RMSProp are confirmed for the accurate identification of nonlinear systems.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271074), and the Special Funds for Major Specialities of Shanghai Education Commission (Grant No.J50101)
文摘In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples.
基金financially supported in part by the National High Technology Research and Development Program of China(863Program,Grant No.2015AA016404)the National Natural Science Foundation of China(Grant Nos.51109020,51179019 and 51779029)the Fundamental Research Program for Key Laboratory of the Education Department of Liaoning Province(Grant No.LZ2015006)
文摘This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative(MIGI) approach is proposed to optimize the distance metric of locally weighted learning(LWL), and a novel non-parametric modeling technique is developed for a nonlinear ship maneuvering system. This proposed method’s advantages are as follows: first, it can avoid the unmodeled dynamics and multicollinearity inherent to the conventional parametric model; second, it eliminates the over-learning or underlearning and obtains the optimal distance metric; and third, the MIGI is not sensitive to the initial parameter value and requires less time during the training phase. These advantages result in a highly accurate mathematical modeling technique that can be conveniently implemented in applications. To verify the characteristics of this mathematical model, two examples are used as the model platforms to study the ship maneuvering.
基金supported by the National Natural Science Foundation of China(41404020)
文摘How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the frequency spectrum analysis. According to the analysis results, gravity field model of the optima] degrees 90-240 is given, which is recovered by COCE gradient data. This paper presents an iterative Wiener filtering method based on the gravity gradient invariants. By this method a degree-220 model was calculated from GOCE SGG (Satellite Gravity Gradient) data. The degrees above 90 of ITG2010 were taken as the prior gravity field model, replacing the low degree gravity field model calculated by GOCE orbit data. GOCE gradient colored noises was processed by Wiener filtering. Finally by Wiener filtering iterative calculation, the gravity field model was restored by space-wise harmonic analysis method. The results show that the model's accuracy matched well with the ESA's (European Space Agency) results by using the same data,
基金supported by National Natural Science Foundation of China (Grant Nos. 91430108 and 11171251)the Major Program of Tianjin University of Finance and Economics (Grant No. ZD1302)
文摘A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. With the Lanczos process the OAP creates a sequence of mutually orthogonal vectors, on the basis of which the projections of the unknown vectors are easily obtained, and thus the approximations to the unknown vectors can be simply constructed by a combination of these projections. This method is an application of the accumulated projection technique proposed recently by the authors of this paper, and can be regarded as a match of conjugate gradient method(CG) in its nature since both the CG and the OAP can be regarded as iterative methods, too. Unlike the CG method which can be only used to solve linear systems with symmetric positive definite coefficient matrices, the OAP can be used to handle systems with indefinite symmetric matrices. Unlike classical Krylov subspace methods which usually ignore the issue of loss of orthogonality, OAP uses an effective approach to detect the loss of orthogonality and a restart strategy is used to handle the loss of orthogonality.Numerical experiments are presented to demonstrate the efficiency of the OAP.