Gradient vector flow (GVF) is an effective external force for active contours, but its iso- tropic nature handicaps its performance. The recently proposed gradient vector flow in the normal direction (NGVF) is ani...Gradient vector flow (GVF) is an effective external force for active contours, but its iso- tropic nature handicaps its performance. The recently proposed gradient vector flow in the normal direction (NGVF) is anisotropic since it only keeps the diffusion along the normal direction of the isophotes; however, it has difficulties forcing a snake into long, thin boundary indentations. In this paper, a novel external force for active contours called normally generalized gradient vector flow (NGGVF) is proposed, which generalizes the NGVF formulation to include two spatially varying weighting functions. Consequently, the proposed NGGVF snake is anisotropic and would improve ac- tive contour convergence into long, thin boundary indentations while maintaining other desirable properties of the NGVF snake, such as enlarged capture range, initialization insensitivity and good convergence at concavities. The advantages on synthetic and real images are demonstrated.展开更多
In this paper, we propose a fast centerline extraction method to be used for gradient and direction vector flow of active contours. The gradient and direction vector flow is a recently reported active contour model ca...In this paper, we propose a fast centerline extraction method to be used for gradient and direction vector flow of active contours. The gradient and direction vector flow is a recently reported active contour model capable of significantly improving the image segmentation performance especially for complex object shape, by seamlessly integrating gradient vector flow and prior directional information. Since the prior directional information is provided by manual line drawing, it can be inconvenient for inexperienced users who might have difficulty in finding the best place to draw the directional lines to achieve the best segmentation performance. This paper describes a method to overcome this problem by automatically extracting centerlines to guide the users for providing the right directional information. Experimental results on synthetic and real images demonstrate the feasibility of the proposed method.展开更多
In this paper,we propose a new gradient vector flow model with advection enhancement,called advection-enhanced gradient vector flow,for calculating the external force employed in the active-contour image segmentation....In this paper,we propose a new gradient vector flow model with advection enhancement,called advection-enhanced gradient vector flow,for calculating the external force employed in the active-contour image segmentation.The proposed model is mainly inspired by the functional derivative of an adaptive total variation regularizer whose minimizer is expected to be able to effectively preserve the desired object boundary.More specifically,by incorporating an additional advection term into the usual gradient vector flow model,the resulting external force can much better help the active contour to recover missing edges,to converge to a narrow and deep concavity,and to preserve weak edges.Numerical experiments are performed to demonstrate the high performance of the newly proposed model.展开更多
The dynamic transmission characteristics and the sensitivities of the three stage idler gear system of the new NC power turret are studied in the paper. Considering the strongly nonlinear factors such as the periodica...The dynamic transmission characteristics and the sensitivities of the three stage idler gear system of the new NC power turret are studied in the paper. Considering the strongly nonlinear factors such as the periodically time-varying mesh stiffness, the nonlinear tooth backlash, the lump-parameter model of the gear system is developed with one rotational and two translational freedoms of each gear. The eigen-values and eigenvectors are derived and analyzed on the basis of the real modal theory. The sensitivities of natural frequencies to design parameters including supporting and meshing stiffnesses, gear masses, and moments of inertia by the direct differential method are also calculated. The results show the quantitative and qualitative impact of the parameters to the natural characteristics of the gear system. Furthermore, the periodic steady state solutions are obtained by the numerical approach based on the nonlinear model. These results are employed to gain insights into the primary controlling parameters, to forecast the severity of the dynamic response, and to assess the acceptability of the gear design.展开更多
基金Supported by the National Natural Science Foundation of China(60805004)the State Key Lab of Space Medicine Fundamen-tals and Application(SMFA09A16)
文摘Gradient vector flow (GVF) is an effective external force for active contours, but its iso- tropic nature handicaps its performance. The recently proposed gradient vector flow in the normal direction (NGVF) is anisotropic since it only keeps the diffusion along the normal direction of the isophotes; however, it has difficulties forcing a snake into long, thin boundary indentations. In this paper, a novel external force for active contours called normally generalized gradient vector flow (NGGVF) is proposed, which generalizes the NGVF formulation to include two spatially varying weighting functions. Consequently, the proposed NGGVF snake is anisotropic and would improve ac- tive contour convergence into long, thin boundary indentations while maintaining other desirable properties of the NGVF snake, such as enlarged capture range, initialization insensitivity and good convergence at concavities. The advantages on synthetic and real images are demonstrated.
文摘In this paper, we propose a fast centerline extraction method to be used for gradient and direction vector flow of active contours. The gradient and direction vector flow is a recently reported active contour model capable of significantly improving the image segmentation performance especially for complex object shape, by seamlessly integrating gradient vector flow and prior directional information. Since the prior directional information is provided by manual line drawing, it can be inconvenient for inexperienced users who might have difficulty in finding the best place to draw the directional lines to achieve the best segmentation performance. This paper describes a method to overcome this problem by automatically extracting centerlines to guide the users for providing the right directional information. Experimental results on synthetic and real images demonstrate the feasibility of the proposed method.
基金supported by the Ministry of Science and Technology of Taiwan under grants MOST 106-2115-M-005-005-MY2(Po-Wen Hsieh),MOST 107-2811-M-008-007(Pei-Chiang Shao)MOST 106-2115-M-008-014-MY2(Suh-Yuh Yang).
文摘In this paper,we propose a new gradient vector flow model with advection enhancement,called advection-enhanced gradient vector flow,for calculating the external force employed in the active-contour image segmentation.The proposed model is mainly inspired by the functional derivative of an adaptive total variation regularizer whose minimizer is expected to be able to effectively preserve the desired object boundary.More specifically,by incorporating an additional advection term into the usual gradient vector flow model,the resulting external force can much better help the active contour to recover missing edges,to converge to a narrow and deep concavity,and to preserve weak edges.Numerical experiments are performed to demonstrate the high performance of the newly proposed model.
文摘The dynamic transmission characteristics and the sensitivities of the three stage idler gear system of the new NC power turret are studied in the paper. Considering the strongly nonlinear factors such as the periodically time-varying mesh stiffness, the nonlinear tooth backlash, the lump-parameter model of the gear system is developed with one rotational and two translational freedoms of each gear. The eigen-values and eigenvectors are derived and analyzed on the basis of the real modal theory. The sensitivities of natural frequencies to design parameters including supporting and meshing stiffnesses, gear masses, and moments of inertia by the direct differential method are also calculated. The results show the quantitative and qualitative impact of the parameters to the natural characteristics of the gear system. Furthermore, the periodic steady state solutions are obtained by the numerical approach based on the nonlinear model. These results are employed to gain insights into the primary controlling parameters, to forecast the severity of the dynamic response, and to assess the acceptability of the gear design.