We present a case of stent graft collapse after performing thoracic endovascular aortic repair with a custom-made fenestrated stent graft. The patient was a 70-year-old woman with an asymptomatic aneurysm of the dista...We present a case of stent graft collapse after performing thoracic endovascular aortic repair with a custom-made fenestrated stent graft. The patient was a 70-year-old woman with an asymptomatic aneurysm of the distal aortic arch, and thoracic endovascular aortic repair was performed. The patient showed a blood pressure difference between the left arm and the right arm on postoperative day (POD) 17 prompting the performance of a chest computed tomography scan which revealed stent graft collapse. She then underwent staged debranching of thoracic endovascular aortic repair. Stent graft collapse is a rare but well-described complication of thoracic endovascular repair. Therefore, patients who undergo such a procedure should be carefully monitored for signs and symptoms, which suggest the possibility of stent collapse.展开更多
BACKGROUND: In the repair of nerve defects, collapse of the venous wall, as a result of vein grafting alone, could impede nerve regeneration. Therefore, vein lumens filled with muscle and nerve segments have been use...BACKGROUND: In the repair of nerve defects, collapse of the venous wall, as a result of vein grafting alone, could impede nerve regeneration. Therefore, vein lumens filled with muscle and nerve segments have been used to bridge nerve defects. OBJECTIVE: To compare the effects of autogenous, inside-out, vein-skeletal, muscle-combined grafting versus standard, vein-skeletal, muscle-combined grafting for the repair of facial nerve defects. DESIGN, TIME AND SETTING: A randomized, controlled, neuroanatomical, animal study was performed at the Animal Experimental Center and Laboratories of the Capital Medical University Xuanwu Hospital and the Peking Union Medical College Hospital from September 2007 to October 2008.MATERIALS: A total of 10 healthy, male, New Zealand rabbits, aged 6 months, were randomly assigned to inside-out, vein-skeletal, muscle-combined grafting and standard, vein-skeletal, muscle-combined grafting groups, with 5 rabbits in each group. METHODS: A 20-mm gap in the buccal branch of the right facial nerve was made in each animal, which was respectively repaired with inside-out, vein-skeletal, muscle-combined grafts or standard vein-skeletal muscle-combined grafts.MAIN OUTCOME MEASURES: At 6 months after implantation, evoked maximal compound muscle action potentials were recorded on bilateral facial nerves using electromyogram. Myelinated nerve fibers of the regenerating nerves were quantified using myelin sheath osmic acid staining. RESULTS: There was no significant difference between the groups in terms of ratios of bilateral amplitude and latency of compound muscle action potential (P 〉 0.05). Moreover, morphology of regenerating nerves and quantity of myelinated nerve fibers were similar between the groups (P 〉 0.05). CONCLUTION: Compared with standard vein grafting, the inside-out vein grafting did not significantly improve nerve regeneration. Therefore, it is not necessary to utilize inside-out vein grafting for the repair of nerve defects, in particular with the combined use of autogenous vein and skeletal muscle grafts.展开更多
BACKGROUND A 46-year-old male underwent ascending aortic replacement,total arch replacement,and descending aortic stent implantation for Stanford type A aortic dissection in 2016.However,an intraoperative stent-graft ...BACKGROUND A 46-year-old male underwent ascending aortic replacement,total arch replacement,and descending aortic stent implantation for Stanford type A aortic dissection in 2016.However,an intraoperative stent-graft was deployed in the false lumen inadvertently.This caused severe iatrogenic thoracic and abdominal aortic dissection,and the dissection involved many visceral arteries.CASE SUMMARY The patient had pain in the chest and back for 1 mo.A computed tomography scan showed that the patient had secondary thoracic and abdominal aortic dissection.The ascending aortic replacement,total arch replacement,and descending aortic stent implantation for Stanford type A aortic dissection were performed 2 years prior.An intraoperative stent-graft was deployed in the false lumen.Endovascular aneurysm repair was performed to address this intractable situation.An occluder was used to occlude the proximal end of the true lumen,and a covered stent was used to direct blood flow back to the true lumen.A three-dimensional printing technique was used in this operation to guide prefenestration.The computed tomography scan at the 1stmo after surgery showed that the thoracic and abdominal aortic dissection was repaired,with all visceral arteries remaining patent.The patient did not develop renal failure or neurological complications after surgery.CONCLUSION The total endovascular repair for false lumen stent-graft implantation was feasible and minimally invasive.Our procedures provided a new solution for stent-graft deployed in the false lumen,and other departments may be inspired by this case when they need to rescue a disastrous stent implantation.展开更多
BACKGROUND: Animal experiments and clinical studies about tissue engineering method applied to repair nerve injury mainly focus on seeking ideal artificial nerve grafts, nerve conduit and seed cells. Autologous nerve...BACKGROUND: Animal experiments and clinical studies about tissue engineering method applied to repair nerve injury mainly focus on seeking ideal artificial nerve grafts, nerve conduit and seed cells. Autologous nerve, allogeneic nerve and xenogeneic nerve are used to bridge nerve defects, it is one of the methods to promote the repair of nerve injury by culturing and growing Schwann cells, which can secrete various neurotrophic factor activities, in the grafts. OBJECTIVE : To observe the effect of acellular nerve grafts co-cultured with Schwann cells in repairing defects of sciatic nerve. DESIGN: An observational comparative study.SETTING: Tissue Engineering Laboratory of China Medical University.MATERIALS: The experiment was carried out in the Tissue Engineering Laboratory of China Medical University between April 2004 and April 2005. Forty neonatal Sprague-Dawley rats of 5-8 days (either males or females) and 24 male Wistar rats of 180-220 g were provided by the experimental animal center of China Medical University. METHODS: ① Culture of Schwann cells: The bilateral sciatic nerves and branchial plexus were isolated from the 40 neonatal SD rats. The sciatic nerves were enzymatically digested with collagenase and dispase, isolatd, purified and cultured with the method of speed-difference adhersion, and identified with the SABC immunohistochemical method. ② Model establishment: In vitro Schwann cells were microinjected into 10-mm long acellular nerve grafts repairing a surgically created gap in the rat sciatic nerve. According to the different grafted methods, the animals were randomly divided into three groups: autografts (n=8), acellular nerve grafts (n=8), or acellular nerve grafts with Schwann cells (n=8). ③ The regenerated nerve fiber number and average diameter of myeline sheath after culture were statistically anlayzed. MAIN OUTCOME MEASURES: ① The regenerated nerve ultrastructure, total number and density of myelinated nerve fibers, and the thickness of myeline sheath were observed under electron microscope. ② The images were processed with the Mias-1000 imaging analytical system to calculate the number of myelinated nerve fibers, and the thickness of myeline sheath. RESULTS: All the 24 Wistar rats were involved in the analysis of results. ① Results observed under transmission electron microscope: The regenerated myelinated nerve fibers in the group of acellular nerve grafts with Schwann cells were more even than those in the group of acellular nerve grafts, the number of myelinated nerve fibers and thickness of myelin sheath were close to those in the allografts group (P 〉 0.05), but significantly different from those in the group of acellular nerve grafts (P 〈 0.05). ② Results observed under scanning electron microscope: A great amount of Schwann cells with two polars were observed in the group of grafts with Schwann cells, the feature of cultured Schwann cells showed shoulder by shoulder, head to head. ③ The number of myelinated nerve fibers and thickness of myelin sheath analyzed by Mias-1000 imaging system in the group of acellular nerve grafts with Schwann cells were close to those in the autografts group (P 〉 0.05), but significantly different from those in the group of acellular nerve grafts (P 〈 0.05).CONCLUSION: Host axonal regeneration is significantly increased after implant of acellular nerve grafts. Acellular nerve grafts with Schwann cells offers a novel approach for repairing the gap of nerve defect.展开更多
Objective To observe the clinical application of direct skin grafting in repairing popliteal scar contracture after burn in children.Methods From April 2017 to January 2019,30 children with popliteal scar contracture ...Objective To observe the clinical application of direct skin grafting in repairing popliteal scar contracture after burn in children.Methods From April 2017 to January 2019,30 children with popliteal scar contracture after burn were selected as the research objects.The scar status,knee joint function and quality of life of the patients before and after the operation were compared by direct skin grafting after medium thickness skin removal.Results 30 patients were treated with skin grafting to repair popliteal scar contracture,27 patients healed well,and the survival rate of skin grafting reached 90.00%.The scores of postoperative scar and knee joint function scale(WOMAC)were lower than those before the operation,and the scores of concise health status scale(SF-36)were higher than those before the operation,with statistical significance(P<0.05).Conclusion Scar contracture of popliteal fossa after burn in children can be repaired by direct skin grafting in the skin extraction area after medium thickness skin cutting,which can effectively improve scar condition,restore knee joint function and significantly improve quality of life.展开更多
The aim of the present study was to investigate and compare the bone formation capacity with three different grafts. Four millimeter segmental defects were created in adult rat tibias and were either left empty (cont...The aim of the present study was to investigate and compare the bone formation capacity with three different grafts. Four millimeter segmental defects were created in adult rat tibias and were either left empty (control defects) or implanted with (1) nano-hydroxyapatite/collagen/PIA (nHAC/PIA) composite, (2) nHAC/ PIA composite added with bone marrow mesenchymal tem cells ( BMSCs ), ( 3 ) nHAC/ PIA composite added with bone morphogenetic protein 2 ( BMP- 2). Radiographs of the defects were taken weekly post-surgery. After 1 or 2 months, the rats were eathaaized. Histologic analyses were performed on the harvested tissue. nHAC/ PIA composite could enhance the repair of rat tibia segmental defects. Addition of BMSCs or BMP- 2 to nHAC/ PIA led to an increase in osteogenesis, nHAC/ PIA composite could be an Meal alternative bone-grafi material and it could also be used as an Meal carrier of BMSCs or BMP- 2.展开更多
Objective To investigate the feasibility of using small intestinal submucosa ( SIS) graft for repair of anterior urethral strictures. Methods From June 2009 to August 2010,18 men ( mean age,38 yrs) with anterior ureth...Objective To investigate the feasibility of using small intestinal submucosa ( SIS) graft for repair of anterior urethral strictures. Methods From June 2009 to August 2010,18 men ( mean age,38 yrs) with anterior urethral strictures underwent urethroplasty using a four layer SIS as an onlay patch graft. SIS was used to展开更多
Peripheral nerve injuries(PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage,...Peripheral nerve injuries(PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts(ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts(TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems(DDS), co-administration of platelet-rich plasma(PRP), and pretreatment with chondroitinase ABC(Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix(ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia(DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.展开更多
Direct coaptation of contralateral C7 to the upper trunk could avoid the interposition of nerve grafts. We have successfully shortened the gap and graft lengths, and even achieved direct coaptation. However, direct re...Direct coaptation of contralateral C7 to the upper trunk could avoid the interposition of nerve grafts. We have successfully shortened the gap and graft lengths, and even achieved direct coaptation. However, direct repair can only be performed in some selected cases, and partial procedures still require autografts, which are the gold standard for repairing neurologic defects. As symptoms often occur after autografting, human acellular nerve allografts have been used to avoid concomitant symptoms. This study investigated the quality of shoulder abduction and elbow flexion following direct repair and acellular allografting to evaluate issues requiring attention for brachial plexus injury repair. Fifty-one brachial plexus injury patients in the surgical database were eligible for this retrospective study. Patients were divided into two groups according to different surgical methods. Direct repair was performed in 27 patients, while acellular nerve allografts were used to bridge the gap between the contralateral C7 nerve root and upper trunk in 24 patients. The length of the harvested contralateral C7 nerve root was measured intraoperatively. Deltoid and biceps muscle strength, and degrees of shoulder abduction and elbow flexion were examined according to the British Medical Research Council scoring system;meaningful recovery was defined as M3–M5. Lengths of anterior and posterior divisions of the contralateral C7 in the direct repair group were 7.64 ± 0.69 mm and 7.55 ± 0.69 mm, respectively, and in the acellular nerve allografts group were 6.46 ± 0.58 mm and 6.43 ± 0.59 mm, respectively. After a minimum of 4-year follow-up, meaningful recoveries of deltoid and biceps muscles in the direct repair group were 88.89% and 85.19%, respectively, while they were 70.83% and 66.67% in the acellular nerve allografts group. Time to C5/C6 reinnervation was shorter in the direct repair group compared with the acellular nerve allografts group. Direct repair facilitated the restoration of shoulder abduction and elbow flexion. Thus, if direct coaptation is not possible, use of acellular nerve allografts is a suitable option. This study was approved by the Medical Ethical Committee of the First Affiliated Hospital of Sun Yat-sen University, China (Application ID:[2017] 290) on November 14, 2017.展开更多
文摘We present a case of stent graft collapse after performing thoracic endovascular aortic repair with a custom-made fenestrated stent graft. The patient was a 70-year-old woman with an asymptomatic aneurysm of the distal aortic arch, and thoracic endovascular aortic repair was performed. The patient showed a blood pressure difference between the left arm and the right arm on postoperative day (POD) 17 prompting the performance of a chest computed tomography scan which revealed stent graft collapse. She then underwent staged debranching of thoracic endovascular aortic repair. Stent graft collapse is a rare but well-described complication of thoracic endovascular repair. Therefore, patients who undergo such a procedure should be carefully monitored for signs and symptoms, which suggest the possibility of stent collapse.
基金the Postdoctoral Science Foundation of China,No.20070420402
文摘BACKGROUND: In the repair of nerve defects, collapse of the venous wall, as a result of vein grafting alone, could impede nerve regeneration. Therefore, vein lumens filled with muscle and nerve segments have been used to bridge nerve defects. OBJECTIVE: To compare the effects of autogenous, inside-out, vein-skeletal, muscle-combined grafting versus standard, vein-skeletal, muscle-combined grafting for the repair of facial nerve defects. DESIGN, TIME AND SETTING: A randomized, controlled, neuroanatomical, animal study was performed at the Animal Experimental Center and Laboratories of the Capital Medical University Xuanwu Hospital and the Peking Union Medical College Hospital from September 2007 to October 2008.MATERIALS: A total of 10 healthy, male, New Zealand rabbits, aged 6 months, were randomly assigned to inside-out, vein-skeletal, muscle-combined grafting and standard, vein-skeletal, muscle-combined grafting groups, with 5 rabbits in each group. METHODS: A 20-mm gap in the buccal branch of the right facial nerve was made in each animal, which was respectively repaired with inside-out, vein-skeletal, muscle-combined grafts or standard vein-skeletal muscle-combined grafts.MAIN OUTCOME MEASURES: At 6 months after implantation, evoked maximal compound muscle action potentials were recorded on bilateral facial nerves using electromyogram. Myelinated nerve fibers of the regenerating nerves were quantified using myelin sheath osmic acid staining. RESULTS: There was no significant difference between the groups in terms of ratios of bilateral amplitude and latency of compound muscle action potential (P 〉 0.05). Moreover, morphology of regenerating nerves and quantity of myelinated nerve fibers were similar between the groups (P 〉 0.05). CONCLUTION: Compared with standard vein grafting, the inside-out vein grafting did not significantly improve nerve regeneration. Therefore, it is not necessary to utilize inside-out vein grafting for the repair of nerve defects, in particular with the combined use of autogenous vein and skeletal muscle grafts.
基金Supported by National Natural Science Foundation of China,No.81600375
文摘BACKGROUND A 46-year-old male underwent ascending aortic replacement,total arch replacement,and descending aortic stent implantation for Stanford type A aortic dissection in 2016.However,an intraoperative stent-graft was deployed in the false lumen inadvertently.This caused severe iatrogenic thoracic and abdominal aortic dissection,and the dissection involved many visceral arteries.CASE SUMMARY The patient had pain in the chest and back for 1 mo.A computed tomography scan showed that the patient had secondary thoracic and abdominal aortic dissection.The ascending aortic replacement,total arch replacement,and descending aortic stent implantation for Stanford type A aortic dissection were performed 2 years prior.An intraoperative stent-graft was deployed in the false lumen.Endovascular aneurysm repair was performed to address this intractable situation.An occluder was used to occlude the proximal end of the true lumen,and a covered stent was used to direct blood flow back to the true lumen.A three-dimensional printing technique was used in this operation to guide prefenestration.The computed tomography scan at the 1stmo after surgery showed that the thoracic and abdominal aortic dissection was repaired,with all visceral arteries remaining patent.The patient did not develop renal failure or neurological complications after surgery.CONCLUSION The total endovascular repair for false lumen stent-graft implantation was feasible and minimally invasive.Our procedures provided a new solution for stent-graft deployed in the false lumen,and other departments may be inspired by this case when they need to rescue a disastrous stent implantation.
基金the National Natural Science Foundation of China, No. 30070775 a grant from the Scientific Research Foundation of Liaoning Department of Education, No. 2005L5371
文摘BACKGROUND: Animal experiments and clinical studies about tissue engineering method applied to repair nerve injury mainly focus on seeking ideal artificial nerve grafts, nerve conduit and seed cells. Autologous nerve, allogeneic nerve and xenogeneic nerve are used to bridge nerve defects, it is one of the methods to promote the repair of nerve injury by culturing and growing Schwann cells, which can secrete various neurotrophic factor activities, in the grafts. OBJECTIVE : To observe the effect of acellular nerve grafts co-cultured with Schwann cells in repairing defects of sciatic nerve. DESIGN: An observational comparative study.SETTING: Tissue Engineering Laboratory of China Medical University.MATERIALS: The experiment was carried out in the Tissue Engineering Laboratory of China Medical University between April 2004 and April 2005. Forty neonatal Sprague-Dawley rats of 5-8 days (either males or females) and 24 male Wistar rats of 180-220 g were provided by the experimental animal center of China Medical University. METHODS: ① Culture of Schwann cells: The bilateral sciatic nerves and branchial plexus were isolated from the 40 neonatal SD rats. The sciatic nerves were enzymatically digested with collagenase and dispase, isolatd, purified and cultured with the method of speed-difference adhersion, and identified with the SABC immunohistochemical method. ② Model establishment: In vitro Schwann cells were microinjected into 10-mm long acellular nerve grafts repairing a surgically created gap in the rat sciatic nerve. According to the different grafted methods, the animals were randomly divided into three groups: autografts (n=8), acellular nerve grafts (n=8), or acellular nerve grafts with Schwann cells (n=8). ③ The regenerated nerve fiber number and average diameter of myeline sheath after culture were statistically anlayzed. MAIN OUTCOME MEASURES: ① The regenerated nerve ultrastructure, total number and density of myelinated nerve fibers, and the thickness of myeline sheath were observed under electron microscope. ② The images were processed with the Mias-1000 imaging analytical system to calculate the number of myelinated nerve fibers, and the thickness of myeline sheath. RESULTS: All the 24 Wistar rats were involved in the analysis of results. ① Results observed under transmission electron microscope: The regenerated myelinated nerve fibers in the group of acellular nerve grafts with Schwann cells were more even than those in the group of acellular nerve grafts, the number of myelinated nerve fibers and thickness of myelin sheath were close to those in the allografts group (P 〉 0.05), but significantly different from those in the group of acellular nerve grafts (P 〈 0.05). ② Results observed under scanning electron microscope: A great amount of Schwann cells with two polars were observed in the group of grafts with Schwann cells, the feature of cultured Schwann cells showed shoulder by shoulder, head to head. ③ The number of myelinated nerve fibers and thickness of myelin sheath analyzed by Mias-1000 imaging system in the group of acellular nerve grafts with Schwann cells were close to those in the autografts group (P 〉 0.05), but significantly different from those in the group of acellular nerve grafts (P 〈 0.05).CONCLUSION: Host axonal regeneration is significantly increased after implant of acellular nerve grafts. Acellular nerve grafts with Schwann cells offers a novel approach for repairing the gap of nerve defect.
文摘Objective To observe the clinical application of direct skin grafting in repairing popliteal scar contracture after burn in children.Methods From April 2017 to January 2019,30 children with popliteal scar contracture after burn were selected as the research objects.The scar status,knee joint function and quality of life of the patients before and after the operation were compared by direct skin grafting after medium thickness skin removal.Results 30 patients were treated with skin grafting to repair popliteal scar contracture,27 patients healed well,and the survival rate of skin grafting reached 90.00%.The scores of postoperative scar and knee joint function scale(WOMAC)were lower than those before the operation,and the scores of concise health status scale(SF-36)were higher than those before the operation,with statistical significance(P<0.05).Conclusion Scar contracture of popliteal fossa after burn in children can be repaired by direct skin grafting in the skin extraction area after medium thickness skin cutting,which can effectively improve scar condition,restore knee joint function and significantly improve quality of life.
文摘The aim of the present study was to investigate and compare the bone formation capacity with three different grafts. Four millimeter segmental defects were created in adult rat tibias and were either left empty (control defects) or implanted with (1) nano-hydroxyapatite/collagen/PIA (nHAC/PIA) composite, (2) nHAC/ PIA composite added with bone marrow mesenchymal tem cells ( BMSCs ), ( 3 ) nHAC/ PIA composite added with bone morphogenetic protein 2 ( BMP- 2). Radiographs of the defects were taken weekly post-surgery. After 1 or 2 months, the rats were eathaaized. Histologic analyses were performed on the harvested tissue. nHAC/ PIA composite could enhance the repair of rat tibia segmental defects. Addition of BMSCs or BMP- 2 to nHAC/ PIA led to an increase in osteogenesis, nHAC/ PIA composite could be an Meal alternative bone-grafi material and it could also be used as an Meal carrier of BMSCs or BMP- 2.
文摘Objective To investigate the feasibility of using small intestinal submucosa ( SIS) graft for repair of anterior urethral strictures. Methods From June 2009 to August 2010,18 men ( mean age,38 yrs) with anterior urethral strictures underwent urethroplasty using a four layer SIS as an onlay patch graft. SIS was used to
基金supported,in part,by a research grant from Baylor Scott&White Health Central Texas Foundation and NIH grant R01-NS067435(JHH)
文摘Peripheral nerve injuries(PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts(ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts(TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems(DDS), co-administration of platelet-rich plasma(PRP), and pretreatment with chondroitinase ABC(Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix(ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia(DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.
基金supported by the National Natural Science Foundation of China,No.81572130(to LQG)and 81601057(to JTY)the National Key Research and Development Plan of China,No.2016YFC1101603(to XLL)the Natural Science Foundation of Guangdong Province of China,No.2015A030310350(to JTY)
文摘Direct coaptation of contralateral C7 to the upper trunk could avoid the interposition of nerve grafts. We have successfully shortened the gap and graft lengths, and even achieved direct coaptation. However, direct repair can only be performed in some selected cases, and partial procedures still require autografts, which are the gold standard for repairing neurologic defects. As symptoms often occur after autografting, human acellular nerve allografts have been used to avoid concomitant symptoms. This study investigated the quality of shoulder abduction and elbow flexion following direct repair and acellular allografting to evaluate issues requiring attention for brachial plexus injury repair. Fifty-one brachial plexus injury patients in the surgical database were eligible for this retrospective study. Patients were divided into two groups according to different surgical methods. Direct repair was performed in 27 patients, while acellular nerve allografts were used to bridge the gap between the contralateral C7 nerve root and upper trunk in 24 patients. The length of the harvested contralateral C7 nerve root was measured intraoperatively. Deltoid and biceps muscle strength, and degrees of shoulder abduction and elbow flexion were examined according to the British Medical Research Council scoring system;meaningful recovery was defined as M3–M5. Lengths of anterior and posterior divisions of the contralateral C7 in the direct repair group were 7.64 ± 0.69 mm and 7.55 ± 0.69 mm, respectively, and in the acellular nerve allografts group were 6.46 ± 0.58 mm and 6.43 ± 0.59 mm, respectively. After a minimum of 4-year follow-up, meaningful recoveries of deltoid and biceps muscles in the direct repair group were 88.89% and 85.19%, respectively, while they were 70.83% and 66.67% in the acellular nerve allografts group. Time to C5/C6 reinnervation was shorter in the direct repair group compared with the acellular nerve allografts group. Direct repair facilitated the restoration of shoulder abduction and elbow flexion. Thus, if direct coaptation is not possible, use of acellular nerve allografts is a suitable option. This study was approved by the Medical Ethical Committee of the First Affiliated Hospital of Sun Yat-sen University, China (Application ID:[2017] 290) on November 14, 2017.