BACKGROUND Rectal cancer is prevalent and associated with substantial morbidity and mortality.AIM To develop a nomogram prediction model for overall survival(OS)in patients with rectal cancer by leveraging a comprehen...BACKGROUND Rectal cancer is prevalent and associated with substantial morbidity and mortality.AIM To develop a nomogram prediction model for overall survival(OS)in patients with rectal cancer by leveraging a comprehensive analysis of demographic,clinicopathological,haematological,and follow-up data to identify independent prognostic factors.METHODS We conducted a prospective cohort study in China involving rectal cancer patients and applied Cox regression and least absolute shrinkage and selection operator regression to assess the significance of various variables as independent prognostic factors for OS.The identified factors were integrated into a nomogram model,which was evaluated for predictive accuracy via the C-index,area under the curve(AUC),calibration curve,and decision curve analysis(DCA).RESULTS Multivariate analysis revealed independent predictors of OS,including the Karnofsky performance status,age,sex,TNM stage,chemotherapy,surgery,targeted therapy,β2-microglobulin,lactate dehydrogenase,and the neutrophil-to-lymphocyte ratio.The nomogram demonstrated a C-index of 0.80 for the training and validation cohorts,with AUC values indicating high predictive accuracy for 1-year,3-year,and 5-year OS.The calibration curves confirmed the model's excellent agreement with the observed survival rates,and DCA revealed the superior clinical utility of the nomogram over the TNM staging system.CONCLUSION In this study,a novel prognostic model that accurately predicts the OS of rectal cancer patients was developed.The model exhibited excellent discriminatory and calibration capabilities,thus offering a reliable tool for health care professionals to estimate patient survival.展开更多
BACKGROUND The prevalence and mortality rates of gastric carcinoma are disproportionately elevated in China,with the disease's intricate and varied characteristics further amplifying its health impact.Precise fore...BACKGROUND The prevalence and mortality rates of gastric carcinoma are disproportionately elevated in China,with the disease's intricate and varied characteristics further amplifying its health impact.Precise forecasting of overall survival(OS)is of paramount importance for the clinical management of individuals afflicted with this malignancy.AIM To develop and validate a nomogram model that provides precise gastric cancer prevention and treatment guidance and more accurate survival outcome prediction for patients with gastric carcinoma.METHODS Data analysis was conducted on samples collected from hospitalized gastric cancer patients between 2018 and 2020.Least absolute shrinkage and selection operator,univariate,and multivariate Cox regression analyses were employed to identify independent prognostic factors.A nomogram model was developed to predict gastric cancer patient outcomes.The model's predictability and discriminative ability were evaluated via receiver operating characteristic curves.To evaluate the clinical utility of the model,Kaplan-Meier and decision curve analyses were performed.RESULTS A total of ten independent prognostic factors were identified,including body mass index,tumor-node-metastasis(TNM)stage,radiation,chemotherapy,surgery,albumin,globulin,neutrophil count,lactate dehydrogenase,and platelet-to-lymphocyte ratio.The area under the curve(AUC)values for the 1-,3-,and 5-year survival prediction in the training set were 0.843,0.850,and 0.821,respectively.The AUC values were 0.864,0.820,and 0.786 for the 1-,3-,and 5-year survival prediction in the validation set,respectively.The model exhibited strong discriminative ability,with both the time AUC and time C-index exceeding 0.75.Compared with TNM staging,the model demonstrated superior clinical utility.Ultimately,a nomogram was developed via a web-based interface.CONCLUSION This study established and validated a novel nomogram model for predicting the OS of gastric cancer patients,which demonstrated strong predictive ability.Based on these findings,this model can aid clinicians in implementing personalized interventions for patients with gastric cancer.展开更多
BACKGROUND Recent studies have indicated that triglyceride glucose(TyG)-waist height ratio(WHtR)and TyG-waist circumference(TyG-WC)are effective indicators for evaluating insulin resistance.However,research on the ass...BACKGROUND Recent studies have indicated that triglyceride glucose(TyG)-waist height ratio(WHtR)and TyG-waist circumference(TyG-WC)are effective indicators for evaluating insulin resistance.However,research on the association in TyG-WHtR,TyG-WC,and the risk and prognosis of major adverse cardiovascular events(MACEs)in type 2 diabetes mellitus(T2DM)cases are limited.AIM To clarify the relation in TyG-WHtR,TyG-WC,and the risk of MACEs and overall mortality in T2DM patients.METHODS Information for this investigation was obtained from Action to Control Cardiovascular Risk in Diabetes(ACCORD)/ACCORD Follow-On(ACCORDION)study database.The Cox regression model was applied to assess the relation among TyG-WHtR,TyG-WC and future MACEs risk and overall mortality in T2DM cases.The RCS analysis was utilized to explore the nonlinear correlation.Subgroup and interaction analyses were conducted to prove the robustness.The receiver operating characteristic curves were applied to analysis the additional predicting value of TyG-WHtR and TyG-WC.RESULTS After full adjustment for confounding variables,the highest baseline TyG-WHtR cohort respectively exhibited a 1.353-fold and 1.420-fold higher risk for MACEs and overall mortality,than the lowest quartile group.Similarly,the highest baseline TyG-WC cohort showed a 1.314-fold and 1.480-fold higher risk for MACEs and overall mortality,respectively.Each 1 SD increase in TyG-WHtR was significantly related to an 11.7%increase in MACEs and a 14.9%enhance in overall mortality.Each 1 SD increase in TyG-WC corresponded to an 11.5%in MACEs and a 16.6%increase in overall mortality.Including these two indexes in conventional models significantly improved the predictive power for MACEs and overall mortality.CONCLUSION TyG-WHtR and TyG-WC were promising predictors of MACEs and overall mortality risk in T2DM cases.展开更多
BACKGROUND The combination of anti-epidermal growth factor receptor(EGFR)therapy and chemotherapy is currently a preferred first-line treatment for patients with unre-sectable,RAS and BRAF wild-type,left-sided metasta...BACKGROUND The combination of anti-epidermal growth factor receptor(EGFR)therapy and chemotherapy is currently a preferred first-line treatment for patients with unre-sectable,RAS and BRAF wild-type,left-sided metastatic colorectal cancer(mCRC).Several studies have also demonstrated the benefit of anti-EGFR therapy in sub-sequent line settings for this patient population.However,direct evidence com-paring the effectiveness of frontline vs subsequent anti-EGFR therapy remains limited,leaving a crucial gap in guiding optimal treatment strategies.AIM To compare overall survival(OS)between frontline and subsequent anti-EGFR treatment in patients with unresectable,RAS and BRAF wild-type,left-sided mCRC.METHODS We retrospectively reviewed the medical records of mCRC patients treated at The King Chulalongkorn Memorial Hospital and Songklanagarind Hospital,Thailand,between January 2013 and April 2023.Patients were classified into two groups based on the sequence of their anti-EGFR treatment.The primary endpoint was OS.RESULTS Among 222 patients with a median follow-up of 29 months,no significant difference in OS was observed between the frontline and subsequent-line groups(HR 1.03,95%CI:0.73-1.46,P=0.878).The median OS was 35.53 months(95%CI:26.59-44.47)for the frontline group and 31.60 months(95%CI:27.83-35.37)for the subsequent-line group.In the subsequent-line group,71 patients(32.4%)who ultimately never received anti-EGFR therapy had a significantly worse median OS of 19.70 months(95%CI:12.87-26.53).CONCLUSION Frontline and subsequent-line anti-EGFR treatments provide comparable OS in unresectable,RAS/BRAF wild-type,left-sided mCRC patients,but early exposure is vital for those unlikely to receive subsequent therapy.展开更多
The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube he...The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h.展开更多
When several traditional flow-shop lines operate in parallel,the operation mode with no communication between production lines will no longer be the optimal production paradigm.This paper describes matrix manufacturin...When several traditional flow-shop lines operate in parallel,the operation mode with no communication between production lines will no longer be the optimal production paradigm.This paper describes matrix manufacturing systems(MMS)in a general manner from the perspective of related works,comparing different manufacturing organizational forms and their characteristics.Subsequently,MMS are extracted during the parallel production of multiple surface mount technology(SMT)lines.An overall equipment effectiveness(OEE)online calculation model and a collaborative optimization method are proposed based on the OEE of the MMS.The innovative idea of this study is to divide existing multiple parallel SMT lines into MMS.The efficiency of each matrix unit(MU)was calculated,and a collaborative optimization method was proposed based on an indicator(OEE).In this paper,an example of eight SMT lines is presented.The partitioning of MUs,OEE calculation of each MU,and the low OEE unit collaborative optimization method are described in detail.Through a case study,the architecture of the collaborative optimization model for the MMS was constructed and discussed.Finally,the improvement in the OEE proved the effectiveness and usability of the proposed architecture.展开更多
Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further...Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further improve the performance of TMPs.Herein,Fe-doped CoP nanoframes(Fe-CoP NFs)with specific open cage configuration were designed and synthesized.The unique nano-framework structured Fe-CoP material shows overpotentials of only 255 and 122 mV at 10 mA cm^(−2)for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER),respectively,overwhelming most transition metal phosphides.For overall water splitting,the cell voltage is 1.65 V for Fe-CoP NFs at a current density of 10 mA cm^(−2),much superior to what is observed for the classical nanocubic structures.Fe-CoP NFs show no activity degradation up to 100 h which contrasts sharply with the rapidly decaying performance of noble metal catalyst reference.The superior electrocatalytic performance of Fe-CoP NFs due to abundant accessible active sites,reduced kinetic energy barrier,and preferable*O-containing intermediate adsorption is demonstrated through experimental observations and theoretical calculations.Our findings could provide a potential method for the preparation of multifunctional material with hollow structures and offer more hopeful prospects for obtaining efficient earth-abundant catalysts for water splitting.展开更多
The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A sel...The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm^(2),along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm^(2) at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm^(2) for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.展开更多
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e...Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition.展开更多
Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and comp...Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and complex by-products separation.To this end,we introduce the lattice oxygen oxidation mechanism(LOM),propelling a novel UOR route using a modified CoFe layered double hydroxide(LDH)catalyst termed CFRO-7.Theoretical calculations and in-situ characterizations highlight the activated lattice oxygen(O_(L))within CFRO-7 as pivotal sites for UOR,optimizing the reaction pathway and accelerating the kinetics.For the urea overall electrolysis application,the LOM route only requires a low voltage of 1.54 V to offer a high current of 100 mA cm^(-2) for long-term utilization(>48 h).Importantly,the by-product NCO^(-)−is significantly suppressed,while the CO_(2)2/N_(2) separation is efficiently achieved.This work proposed a pioneering paradigm,invoking the LOM pathway in urea electrolysis to expedite reaction dynamics and enhance product selectivity.展开更多
The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR inv...The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.展开更多
BACKGROUND The colon cancer prognosis is influenced by multiple factors,including clinical,pathological,and non-biological factors.However,only a few studies have focused on computed tomography(CT)imaging features.The...BACKGROUND The colon cancer prognosis is influenced by multiple factors,including clinical,pathological,and non-biological factors.However,only a few studies have focused on computed tomography(CT)imaging features.Therefore,this study aims to predict the prognosis of patients with colon cancer by combining CT imaging features with clinical and pathological characteristics,and establishes a nomogram to provide critical guidance for the individualized treatment.AIM To establish and validate a nomogram to predict the overall survival(OS)of patients with colon cancer.METHODS A retrospective analysis was conducted on the survival data of 249 patients with colon cancer confirmed by surgical pathology between January 2017 and December 2021.The patients were randomly divided into training and testing groups at a 1:1 ratio.Univariate and multivariate logistic regression analyses were performed to identify the independent risk factors associated with OS,and a nomogram model was constructed for the training group.Survival curves were calculated using the Kaplan–Meier method.The concordance index(C-index)and calibration curve were used to evaluate the nomogram model in the training and testing groups.RESULTS Multivariate logistic regression analysis revealed that lymph node metastasis on CT,perineural invasion,and tumor classification were independent prognostic factors.A nomogram incorporating these variables was constructed,and the C-index of the training and testing groups was 0.804 and 0.692,respectively.The calibration curves demonstrated good consistency between the actual values and predicted probabilities of OS.CONCLUSION A nomogram combining CT imaging characteristics and clinicopathological factors exhibited good discrimination and reliability.It can aid clinicians in risk stratification and postoperative monitoring and provide important guidance for the individualized treatment of patients with colon cancer.展开更多
Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheet...Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.展开更多
Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation o...Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation of charges,resulting in poor photocatalytic activity.In the present study,we successfully synthesize SrTaO_(2)N photocatalyst with low density of defect states,uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping.Some important parameters,such as the size of unit cell,the content of nitrogen,and microstructure,prove the successful doping of Mg.The defect-related carrier recombination has been significantly reduced by Mg doping,which effectively promotes the charge separation.Moreover,Mg doping induces a change of the band edge,which makes proton reduction have a stronger driving force.After modifying with the core/shell-structured Pt/Cr_(2)O_(3)cocatalyst,the H_(2)evolution activity of the optimized SrTaO_(2)N:Mg is 10 times that of the undoped SrTaO_(2)N,with an impressive apparent quantum yield of 1.51%at 420 nm.By coupling with Au-FeCoO_(x)modified BiVO_(4)as an O_(2)-evolution photocatalyst and[Fe(CN)_(6)]_(3)−/[Fe(CN)_(6)]_(4)−as the redox couple,a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36%at 420 nm.This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.展开更多
Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the e...Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the electrodes,resulting in catalyst detachment by bubble generation and other uncertain interference,and eventually reducing the OWS performance.To surmount this challenge,we synthesized a hybrid material of Co_(3)S_(4)-pyrolysis lotus fiber(labeled as Co_(3)S_(4)-p LF)textile by hydrothermal and hightemperature pyrolysis processes for electrocatalytic OWS.Owing to the natural LF textile exposing the uniformly distributed functional groups(AOH,ANH_(2),etc.)to anchor Co_(3)S_(4)nanoparticles with hierarchical porous structure and outstanding hydrophily,the hybrid Co_(3)S_(4)-p LF catalyst shows low overpotentials at 10 m A cm^(-2)(η_(10,HER)=100 m Vη_(10,OER)=240 mV)alongside prolonged operational stability during electrocatalytic reactions.Theoretical calculations reveal that the electron transfer from p LF to Co_(3)S_(4)in the hybrid Co_(3)S_(4)-p LF is beneficial to the electrocatalytic process.This work will shed light on the development of nature-inspired carbon-based materials in hybrid electrocatalysts for OWS.展开更多
BACKGROUND Gastric cancer(GC)is prevalent and aggressive,especially when patients have distant lung metastases,which often places patients into advanced stages.By identifying prognostic variables for lung metastasis i...BACKGROUND Gastric cancer(GC)is prevalent and aggressive,especially when patients have distant lung metastases,which often places patients into advanced stages.By identifying prognostic variables for lung metastasis in GC patients,it may be po-ssible to construct a good prediction model for both overall survival(OS)and the cumulative incidence prediction(CIP)plot of the tumour.AIM To investigate the predictors of GC with lung metastasis(GCLM)to produce nomograms for OS and generate CIP by using cancer-specific survival(CSS)data.METHODS Data from January 2000 to December 2020 involving 1652 patients with GCLM were obtained from the Surveillance,epidemiology,and end results program database.The major observational endpoint was OS;hence,patients were se-parated into training and validation groups.Correlation analysis determined va-rious connections.Univariate and multivariate Cox analyses validated the independent predictive factors.Nomogram distinction and calibration were performed with the time-dependent area under the curve(AUC)and calibration curves.To evaluate the accuracy and clinical usefulness of the nomograms,decision curve analysis(DCA)was performed.The clinical utility of the novel prognostic model was compared to that of the 7th edition of the American Joint Committee on Cancer(AJCC)staging system by utilizing Net Reclassification Improvement(NRI)and Integrated Discrimination Improvement(IDI).Finally,the OS prognostic model and Cox-AJCC risk stratification model modified for the AJCC system were compared.RESULTS For the purpose of creating the OS nomogram,a CIP plot based on CSS was generated.Cox multivariate regression analysis identified eleven significant prognostic factors(P<0.05)related to liver metastasis,bone metastasis,primary site,surgery,regional surgery,treatment sequence,chemotherapy,radiotherapy,positive lymph node count,N staging,and time from diagnosis to treatment.It was clear from the DCA(net benefit>0),time-de-pendent ROC curve(training/validation set AUC>0.7),and calibration curve(reliability slope closer to 45 degrees)results that the OS nomogram demonstrated a high level of predictive efficiency.The OS prediction model(New Model AUC=0.83)also performed much better than the old Cox-AJCC model(AUC difference between the new model and the old model greater than 0)in terms of risk stratification(P<0.0001)and verification using the IDI and NRI.CONCLUSION The OS nomogram for GCLM successfully predicts 1-and 3-year OS.Moreover,this approach can help to ap-propriately classify patients into high-risk and low-risk groups,thereby guiding treatment.展开更多
This article examines the relationship between headwear design and overall clothing styling,emphasizing the importance of headwear in conveying personal style and cultural identity.It traces the evolution of Chinese a...This article examines the relationship between headwear design and overall clothing styling,emphasizing the importance of headwear in conveying personal style and cultural identity.It traces the evolution of Chinese and Western headwear throughout history,highlighting the interplay between headwear and the wearer's personal charac-teristics,life events,and cultural background.The article concludes by emphasizing that headwear design is not only a reflection of fashion,but also a manifestation of cultural depth and individuality.展开更多
BACKGROUND Thumb replantation following complete traumatic avulsion requires complex techniques to restore function,especially in cases of avulsion at the level of the metacarpophalangeal joint(MCP I)and avulsion of t...BACKGROUND Thumb replantation following complete traumatic avulsion requires complex techniques to restore function,especially in cases of avulsion at the level of the metacarpophalangeal joint(MCP I)and avulsion of the flexor pollicis longus(FPL)at the musculotendinous junction.Possible treatments include direct tendon suture or tendon transfer,most commonly from the ring finger.To optimize function and avoid donor finger complications,we performed thumb replantation with flexion restoration using brachioradialis(BR)tendon transfer with palmaris longus(PL)tendon graft.CASE SUMMARY A 20-year-old left-handed male was admitted for a complete traumatic left thumb amputation following an accident while sliding from the top of a handrail.The patient presented with skin and bone avulsion at the MCP I,avulsion of the FPL tendon at the musculotendinous junction(zone 5),avulsion of the extensor pollicis longus tendon(zone T3),and avulsion of the thumb’s collateral arteries and nerves.The patient was treated with two stage thumb repair.The first intervention consisted of thumb replantation with MCP I arthrodesis,resection of avulsed FPL tendon and implantation of a silicone tendon prosthesis.The second intervention consisted of PL tendon graft and BR tendon transfer.Follow-up at 10 months showed good outcomes with active interphalangeal flexion of 70°,grip strength of 45 kg,key pinch strength of 15 kg and two-point discrimination threshold of 4 mm.CONCLUSION Flexion restoration after complete thumb amputation with FPL avulsion at the musculotendinous junction can be achieved using BR tendon transfer with PL tendon graft.展开更多
Grafting is an effective technique for increasing the resistance of vegetables to biotic and abiotic stresses.It has been widely applied to produce solanaceous and melon vegetables.Temperature is an important external...Grafting is an effective technique for increasing the resistance of vegetables to biotic and abiotic stresses.It has been widely applied to produce solanaceous and melon vegetables.Temperature is an important external factor affecting graft formation.However,the molecular mechanism by which external ambient temperature affects tomato graft formation remains unclear.In this study,we demonstrated that elevating ambient temperature during grafting to 35℃ for more than 24 h after grafting accelerated vascular reconnection.We generated self-or heterografted combinations between phyB1B2 and pif4 loss-of-function mutant and wild-type plants,and were mutants unresponsive to graft formation at elevated ambient temperature.In addition,elevated ambient temperature induced SlPIF4 expression during grafting.SlPIF4 directly binds the promoters of auxin biosynthesis genes SlYUCCAs and activates their expression.Further investigation revealed auxin accumulation in the graft junction under elevated ambient temperature.The results illuminate the mechanism by which the PHYB-PIF4-auxin module promotes tomato graft formation in response to elevated ambient temperature.展开更多
[Objectives]To select the virus-free Citrus reticulata Hongmeiren as test material to select rootstocks suitable for local cultivation,and to carry out demonstration and popularization of suitable rootstocks for plant...[Objectives]To select the virus-free Citrus reticulata Hongmeiren as test material to select rootstocks suitable for local cultivation,and to carry out demonstration and popularization of suitable rootstocks for planting C.reticulata Hongmeiren in the south bank of Hangzhou Bay.[Methods]The effects of different rootstocks on the survival rate,biological characteristics and fruit quality were analyzed by grafting onto three kinds of rootstocks,namely,C.unshiu Marc.cv.Owari,S.mandarin cv.Miyagawa wase and C.trifoliata L.[Results]The grafting survival rate for C.trifoliata L.was the highest;from the index of scion growth,the scion diameter,new shoot length,new shoot thickness and leaf area of C.unshiu Marc.cv.Owari were the largest,and the tree height of S.mandarin cv.Miyagawa wase was the highest;from the fruit quality index,the fruit quality of C.unshiu Marc.cv.Owari was the best.[Conclusions]C.unshiu Marc.cv.Owari is suitable as the preferred rootstock for virus-free C.reticulata Hongmeiren on the south bank of Hangzhou Bay,and can be demonstrated and promoted.展开更多
文摘BACKGROUND Rectal cancer is prevalent and associated with substantial morbidity and mortality.AIM To develop a nomogram prediction model for overall survival(OS)in patients with rectal cancer by leveraging a comprehensive analysis of demographic,clinicopathological,haematological,and follow-up data to identify independent prognostic factors.METHODS We conducted a prospective cohort study in China involving rectal cancer patients and applied Cox regression and least absolute shrinkage and selection operator regression to assess the significance of various variables as independent prognostic factors for OS.The identified factors were integrated into a nomogram model,which was evaluated for predictive accuracy via the C-index,area under the curve(AUC),calibration curve,and decision curve analysis(DCA).RESULTS Multivariate analysis revealed independent predictors of OS,including the Karnofsky performance status,age,sex,TNM stage,chemotherapy,surgery,targeted therapy,β2-microglobulin,lactate dehydrogenase,and the neutrophil-to-lymphocyte ratio.The nomogram demonstrated a C-index of 0.80 for the training and validation cohorts,with AUC values indicating high predictive accuracy for 1-year,3-year,and 5-year OS.The calibration curves confirmed the model's excellent agreement with the observed survival rates,and DCA revealed the superior clinical utility of the nomogram over the TNM staging system.CONCLUSION In this study,a novel prognostic model that accurately predicts the OS of rectal cancer patients was developed.The model exhibited excellent discriminatory and calibration capabilities,thus offering a reliable tool for health care professionals to estimate patient survival.
文摘BACKGROUND The prevalence and mortality rates of gastric carcinoma are disproportionately elevated in China,with the disease's intricate and varied characteristics further amplifying its health impact.Precise forecasting of overall survival(OS)is of paramount importance for the clinical management of individuals afflicted with this malignancy.AIM To develop and validate a nomogram model that provides precise gastric cancer prevention and treatment guidance and more accurate survival outcome prediction for patients with gastric carcinoma.METHODS Data analysis was conducted on samples collected from hospitalized gastric cancer patients between 2018 and 2020.Least absolute shrinkage and selection operator,univariate,and multivariate Cox regression analyses were employed to identify independent prognostic factors.A nomogram model was developed to predict gastric cancer patient outcomes.The model's predictability and discriminative ability were evaluated via receiver operating characteristic curves.To evaluate the clinical utility of the model,Kaplan-Meier and decision curve analyses were performed.RESULTS A total of ten independent prognostic factors were identified,including body mass index,tumor-node-metastasis(TNM)stage,radiation,chemotherapy,surgery,albumin,globulin,neutrophil count,lactate dehydrogenase,and platelet-to-lymphocyte ratio.The area under the curve(AUC)values for the 1-,3-,and 5-year survival prediction in the training set were 0.843,0.850,and 0.821,respectively.The AUC values were 0.864,0.820,and 0.786 for the 1-,3-,and 5-year survival prediction in the validation set,respectively.The model exhibited strong discriminative ability,with both the time AUC and time C-index exceeding 0.75.Compared with TNM staging,the model demonstrated superior clinical utility.Ultimately,a nomogram was developed via a web-based interface.CONCLUSION This study established and validated a novel nomogram model for predicting the OS of gastric cancer patients,which demonstrated strong predictive ability.Based on these findings,this model can aid clinicians in implementing personalized interventions for patients with gastric cancer.
文摘BACKGROUND Recent studies have indicated that triglyceride glucose(TyG)-waist height ratio(WHtR)and TyG-waist circumference(TyG-WC)are effective indicators for evaluating insulin resistance.However,research on the association in TyG-WHtR,TyG-WC,and the risk and prognosis of major adverse cardiovascular events(MACEs)in type 2 diabetes mellitus(T2DM)cases are limited.AIM To clarify the relation in TyG-WHtR,TyG-WC,and the risk of MACEs and overall mortality in T2DM patients.METHODS Information for this investigation was obtained from Action to Control Cardiovascular Risk in Diabetes(ACCORD)/ACCORD Follow-On(ACCORDION)study database.The Cox regression model was applied to assess the relation among TyG-WHtR,TyG-WC and future MACEs risk and overall mortality in T2DM cases.The RCS analysis was utilized to explore the nonlinear correlation.Subgroup and interaction analyses were conducted to prove the robustness.The receiver operating characteristic curves were applied to analysis the additional predicting value of TyG-WHtR and TyG-WC.RESULTS After full adjustment for confounding variables,the highest baseline TyG-WHtR cohort respectively exhibited a 1.353-fold and 1.420-fold higher risk for MACEs and overall mortality,than the lowest quartile group.Similarly,the highest baseline TyG-WC cohort showed a 1.314-fold and 1.480-fold higher risk for MACEs and overall mortality,respectively.Each 1 SD increase in TyG-WHtR was significantly related to an 11.7%increase in MACEs and a 14.9%enhance in overall mortality.Each 1 SD increase in TyG-WC corresponded to an 11.5%in MACEs and a 16.6%increase in overall mortality.Including these two indexes in conventional models significantly improved the predictive power for MACEs and overall mortality.CONCLUSION TyG-WHtR and TyG-WC were promising predictors of MACEs and overall mortality risk in T2DM cases.
文摘BACKGROUND The combination of anti-epidermal growth factor receptor(EGFR)therapy and chemotherapy is currently a preferred first-line treatment for patients with unre-sectable,RAS and BRAF wild-type,left-sided metastatic colorectal cancer(mCRC).Several studies have also demonstrated the benefit of anti-EGFR therapy in sub-sequent line settings for this patient population.However,direct evidence com-paring the effectiveness of frontline vs subsequent anti-EGFR therapy remains limited,leaving a crucial gap in guiding optimal treatment strategies.AIM To compare overall survival(OS)between frontline and subsequent anti-EGFR treatment in patients with unresectable,RAS and BRAF wild-type,left-sided mCRC.METHODS We retrospectively reviewed the medical records of mCRC patients treated at The King Chulalongkorn Memorial Hospital and Songklanagarind Hospital,Thailand,between January 2013 and April 2023.Patients were classified into two groups based on the sequence of their anti-EGFR treatment.The primary endpoint was OS.RESULTS Among 222 patients with a median follow-up of 29 months,no significant difference in OS was observed between the frontline and subsequent-line groups(HR 1.03,95%CI:0.73-1.46,P=0.878).The median OS was 35.53 months(95%CI:26.59-44.47)for the frontline group and 31.60 months(95%CI:27.83-35.37)for the subsequent-line group.In the subsequent-line group,71 patients(32.4%)who ultimately never received anti-EGFR therapy had a significantly worse median OS of 19.70 months(95%CI:12.87-26.53).CONCLUSION Frontline and subsequent-line anti-EGFR treatments provide comparable OS in unresectable,RAS/BRAF wild-type,left-sided mCRC patients,but early exposure is vital for those unlikely to receive subsequent therapy.
基金supported by the National Natural Science Foundation of China under Grant No.52072196,52002200,52102106,52202262,22379081,22379080Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No.ZR2020zD09the Natural Science Foundation of Shandong Province under Grant No.ZR2020QE063,ZR202108180009,ZR2023QE059.
文摘The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h.
基金Supported by Jiangsu Provincial Agriculture Science and Technology Innovation Fund(Grant No.CX(23)3036)National Natural Science Foundation of China(Grant No.52375479)+1 种基金Jiangsu Provincal Graduate Research and Practical Innovation Program(Grant No.KYCX24_0825)Changzhou Municipal Sci&Tech Program(Grant No.CM20223014).
文摘When several traditional flow-shop lines operate in parallel,the operation mode with no communication between production lines will no longer be the optimal production paradigm.This paper describes matrix manufacturing systems(MMS)in a general manner from the perspective of related works,comparing different manufacturing organizational forms and their characteristics.Subsequently,MMS are extracted during the parallel production of multiple surface mount technology(SMT)lines.An overall equipment effectiveness(OEE)online calculation model and a collaborative optimization method are proposed based on the OEE of the MMS.The innovative idea of this study is to divide existing multiple parallel SMT lines into MMS.The efficiency of each matrix unit(MU)was calculated,and a collaborative optimization method was proposed based on an indicator(OEE).In this paper,an example of eight SMT lines is presented.The partitioning of MUs,OEE calculation of each MU,and the low OEE unit collaborative optimization method are described in detail.Through a case study,the architecture of the collaborative optimization model for the MMS was constructed and discussed.Finally,the improvement in the OEE proved the effectiveness and usability of the proposed architecture.
基金the China Scholarship Council(CSC)for the financial support(202206230096)D.Yu would like to thank the CSC for the Doctor scholarship(202006360037)+1 种基金J.Dutta would like to acknowledge the partial financial support of VINNOVA project no.2021-02313.PZhang would like to acknowledge partial financial support from the National Natural Science Foundation of China(Nos 52111530187,51972210).
文摘Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further improve the performance of TMPs.Herein,Fe-doped CoP nanoframes(Fe-CoP NFs)with specific open cage configuration were designed and synthesized.The unique nano-framework structured Fe-CoP material shows overpotentials of only 255 and 122 mV at 10 mA cm^(−2)for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER),respectively,overwhelming most transition metal phosphides.For overall water splitting,the cell voltage is 1.65 V for Fe-CoP NFs at a current density of 10 mA cm^(−2),much superior to what is observed for the classical nanocubic structures.Fe-CoP NFs show no activity degradation up to 100 h which contrasts sharply with the rapidly decaying performance of noble metal catalyst reference.The superior electrocatalytic performance of Fe-CoP NFs due to abundant accessible active sites,reduced kinetic energy barrier,and preferable*O-containing intermediate adsorption is demonstrated through experimental observations and theoretical calculations.Our findings could provide a potential method for the preparation of multifunctional material with hollow structures and offer more hopeful prospects for obtaining efficient earth-abundant catalysts for water splitting.
基金financially supported from the National Natural Science Foundation of China(No.52201254)the Natural Science Foundation of Shandong Province,China(Nos.ZR2023ME155,ZR2020MB090,ZR2020QE012,ZR2020MB027)+1 种基金the Project of“20 Items of University”of Jinan,China(No.202228046)the Taishan Scholar Project of Shandong Province,China(No.tsqn202306226)。
文摘The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm^(2),along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm^(2) at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm^(2) for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.
基金supported by the Inner Mongolia R&D Program Plan(2021ZD0042,2021EEDSCXSFQZD006)the National Natural Science Foundation of China(21902123)the Natural Science Basic Research Program of Shaanxi(2023-JC-ZD-22)。
文摘Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition.
基金supported by Fundamental Research Funds for the Central Universities(B220202062)supported by Key Program of National Natural Science Foundation of China(92047201,92047303,52102237)+1 种基金National Science Funds for Creative Research Groups of China(51421006)supported by Postdoctoral Science Foundations of China and Jiangsu Province(2021M690861,2022T150183,2021K065A)。
文摘Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and complex by-products separation.To this end,we introduce the lattice oxygen oxidation mechanism(LOM),propelling a novel UOR route using a modified CoFe layered double hydroxide(LDH)catalyst termed CFRO-7.Theoretical calculations and in-situ characterizations highlight the activated lattice oxygen(O_(L))within CFRO-7 as pivotal sites for UOR,optimizing the reaction pathway and accelerating the kinetics.For the urea overall electrolysis application,the LOM route only requires a low voltage of 1.54 V to offer a high current of 100 mA cm^(-2) for long-term utilization(>48 h).Importantly,the by-product NCO^(-)−is significantly suppressed,while the CO_(2)2/N_(2) separation is efficiently achieved.This work proposed a pioneering paradigm,invoking the LOM pathway in urea electrolysis to expedite reaction dynamics and enhance product selectivity.
基金financially supported by the National Natural Science Foundation of China(22378204,22008121,51790492)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(T2125004)+1 种基金the Funding of NJUST(No.TSXK2022D002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0454)。
文摘The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.
基金Supported by Cancer Research Program of National Cancer Center,No.NCC201917B05Special Research Fund Project of Biomedical Center of Hubei Cancer Hospital,No.2022SWZX06.
文摘BACKGROUND The colon cancer prognosis is influenced by multiple factors,including clinical,pathological,and non-biological factors.However,only a few studies have focused on computed tomography(CT)imaging features.Therefore,this study aims to predict the prognosis of patients with colon cancer by combining CT imaging features with clinical and pathological characteristics,and establishes a nomogram to provide critical guidance for the individualized treatment.AIM To establish and validate a nomogram to predict the overall survival(OS)of patients with colon cancer.METHODS A retrospective analysis was conducted on the survival data of 249 patients with colon cancer confirmed by surgical pathology between January 2017 and December 2021.The patients were randomly divided into training and testing groups at a 1:1 ratio.Univariate and multivariate logistic regression analyses were performed to identify the independent risk factors associated with OS,and a nomogram model was constructed for the training group.Survival curves were calculated using the Kaplan–Meier method.The concordance index(C-index)and calibration curve were used to evaluate the nomogram model in the training and testing groups.RESULTS Multivariate logistic regression analysis revealed that lymph node metastasis on CT,perineural invasion,and tumor classification were independent prognostic factors.A nomogram incorporating these variables was constructed,and the C-index of the training and testing groups was 0.804 and 0.692,respectively.The calibration curves demonstrated good consistency between the actual values and predicted probabilities of OS.CONCLUSION A nomogram combining CT imaging characteristics and clinicopathological factors exhibited good discrimination and reliability.It can aid clinicians in risk stratification and postoperative monitoring and provide important guidance for the individualized treatment of patients with colon cancer.
基金supported by the Research Funds of Institute of Zhejiang University-Quzhou(IZQ2023RCZX032)the Natural Science Foundation of Guangdong Province(2022A1515010185)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-005A3)partially supported by the Special Funds for Postdoctoral Research at Tsinghua University(100415017)。
文摘Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.
文摘Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation of charges,resulting in poor photocatalytic activity.In the present study,we successfully synthesize SrTaO_(2)N photocatalyst with low density of defect states,uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping.Some important parameters,such as the size of unit cell,the content of nitrogen,and microstructure,prove the successful doping of Mg.The defect-related carrier recombination has been significantly reduced by Mg doping,which effectively promotes the charge separation.Moreover,Mg doping induces a change of the band edge,which makes proton reduction have a stronger driving force.After modifying with the core/shell-structured Pt/Cr_(2)O_(3)cocatalyst,the H_(2)evolution activity of the optimized SrTaO_(2)N:Mg is 10 times that of the undoped SrTaO_(2)N,with an impressive apparent quantum yield of 1.51%at 420 nm.By coupling with Au-FeCoO_(x)modified BiVO_(4)as an O_(2)-evolution photocatalyst and[Fe(CN)_(6)]_(3)−/[Fe(CN)_(6)]_(4)−as the redox couple,a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36%at 420 nm.This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.
基金supported by the Scientific Research Foundation of Hunan Provincial Education Department,China(22B0893)the Scientific Research Foundation of Hunan Provincial Education Department,China(20A060)。
文摘Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the electrodes,resulting in catalyst detachment by bubble generation and other uncertain interference,and eventually reducing the OWS performance.To surmount this challenge,we synthesized a hybrid material of Co_(3)S_(4)-pyrolysis lotus fiber(labeled as Co_(3)S_(4)-p LF)textile by hydrothermal and hightemperature pyrolysis processes for electrocatalytic OWS.Owing to the natural LF textile exposing the uniformly distributed functional groups(AOH,ANH_(2),etc.)to anchor Co_(3)S_(4)nanoparticles with hierarchical porous structure and outstanding hydrophily,the hybrid Co_(3)S_(4)-p LF catalyst shows low overpotentials at 10 m A cm^(-2)(η_(10,HER)=100 m Vη_(10,OER)=240 mV)alongside prolonged operational stability during electrocatalytic reactions.Theoretical calculations reveal that the electron transfer from p LF to Co_(3)S_(4)in the hybrid Co_(3)S_(4)-p LF is beneficial to the electrocatalytic process.This work will shed light on the development of nature-inspired carbon-based materials in hybrid electrocatalysts for OWS.
基金Supported by Peng-Cheng Talent-Medical Young Reserve Talent Training Program,No.XWRCHT20220002Xuzhou City Health and Health Commission Technology Project Contract,No.XWKYHT20230081and Key Research and Development Plan Project of Xuzhou City,No.KC22179.
文摘BACKGROUND Gastric cancer(GC)is prevalent and aggressive,especially when patients have distant lung metastases,which often places patients into advanced stages.By identifying prognostic variables for lung metastasis in GC patients,it may be po-ssible to construct a good prediction model for both overall survival(OS)and the cumulative incidence prediction(CIP)plot of the tumour.AIM To investigate the predictors of GC with lung metastasis(GCLM)to produce nomograms for OS and generate CIP by using cancer-specific survival(CSS)data.METHODS Data from January 2000 to December 2020 involving 1652 patients with GCLM were obtained from the Surveillance,epidemiology,and end results program database.The major observational endpoint was OS;hence,patients were se-parated into training and validation groups.Correlation analysis determined va-rious connections.Univariate and multivariate Cox analyses validated the independent predictive factors.Nomogram distinction and calibration were performed with the time-dependent area under the curve(AUC)and calibration curves.To evaluate the accuracy and clinical usefulness of the nomograms,decision curve analysis(DCA)was performed.The clinical utility of the novel prognostic model was compared to that of the 7th edition of the American Joint Committee on Cancer(AJCC)staging system by utilizing Net Reclassification Improvement(NRI)and Integrated Discrimination Improvement(IDI).Finally,the OS prognostic model and Cox-AJCC risk stratification model modified for the AJCC system were compared.RESULTS For the purpose of creating the OS nomogram,a CIP plot based on CSS was generated.Cox multivariate regression analysis identified eleven significant prognostic factors(P<0.05)related to liver metastasis,bone metastasis,primary site,surgery,regional surgery,treatment sequence,chemotherapy,radiotherapy,positive lymph node count,N staging,and time from diagnosis to treatment.It was clear from the DCA(net benefit>0),time-de-pendent ROC curve(training/validation set AUC>0.7),and calibration curve(reliability slope closer to 45 degrees)results that the OS nomogram demonstrated a high level of predictive efficiency.The OS prediction model(New Model AUC=0.83)also performed much better than the old Cox-AJCC model(AUC difference between the new model and the old model greater than 0)in terms of risk stratification(P<0.0001)and verification using the IDI and NRI.CONCLUSION The OS nomogram for GCLM successfully predicts 1-and 3-year OS.Moreover,this approach can help to ap-propriately classify patients into high-risk and low-risk groups,thereby guiding treatment.
文摘This article examines the relationship between headwear design and overall clothing styling,emphasizing the importance of headwear in conveying personal style and cultural identity.It traces the evolution of Chinese and Western headwear throughout history,highlighting the interplay between headwear and the wearer's personal charac-teristics,life events,and cultural background.The article concludes by emphasizing that headwear design is not only a reflection of fashion,but also a manifestation of cultural depth and individuality.
文摘BACKGROUND Thumb replantation following complete traumatic avulsion requires complex techniques to restore function,especially in cases of avulsion at the level of the metacarpophalangeal joint(MCP I)and avulsion of the flexor pollicis longus(FPL)at the musculotendinous junction.Possible treatments include direct tendon suture or tendon transfer,most commonly from the ring finger.To optimize function and avoid donor finger complications,we performed thumb replantation with flexion restoration using brachioradialis(BR)tendon transfer with palmaris longus(PL)tendon graft.CASE SUMMARY A 20-year-old left-handed male was admitted for a complete traumatic left thumb amputation following an accident while sliding from the top of a handrail.The patient presented with skin and bone avulsion at the MCP I,avulsion of the FPL tendon at the musculotendinous junction(zone 5),avulsion of the extensor pollicis longus tendon(zone T3),and avulsion of the thumb’s collateral arteries and nerves.The patient was treated with two stage thumb repair.The first intervention consisted of thumb replantation with MCP I arthrodesis,resection of avulsed FPL tendon and implantation of a silicone tendon prosthesis.The second intervention consisted of PL tendon graft and BR tendon transfer.Follow-up at 10 months showed good outcomes with active interphalangeal flexion of 70°,grip strength of 45 kg,key pinch strength of 15 kg and two-point discrimination threshold of 4 mm.CONCLUSION Flexion restoration after complete thumb amputation with FPL avulsion at the musculotendinous junction can be achieved using BR tendon transfer with PL tendon graft.
基金supported by China Agriculture Research System of MOF and MARA(Grant No.CARS23-B10)The Major Science and Technology Projects in Hainan Province(Grant No.ZDKJ2021005)+1 种基金Key R&D projects in Shandong Province(Grant No.LJNY202106)Central Public-interest Scientific Institution Basal Research Fund(Grant No.IVF-BRF2023006)。
文摘Grafting is an effective technique for increasing the resistance of vegetables to biotic and abiotic stresses.It has been widely applied to produce solanaceous and melon vegetables.Temperature is an important external factor affecting graft formation.However,the molecular mechanism by which external ambient temperature affects tomato graft formation remains unclear.In this study,we demonstrated that elevating ambient temperature during grafting to 35℃ for more than 24 h after grafting accelerated vascular reconnection.We generated self-or heterografted combinations between phyB1B2 and pif4 loss-of-function mutant and wild-type plants,and were mutants unresponsive to graft formation at elevated ambient temperature.In addition,elevated ambient temperature induced SlPIF4 expression during grafting.SlPIF4 directly binds the promoters of auxin biosynthesis genes SlYUCCAs and activates their expression.Further investigation revealed auxin accumulation in the graft junction under elevated ambient temperature.The results illuminate the mechanism by which the PHYB-PIF4-auxin module promotes tomato graft formation in response to elevated ambient temperature.
文摘[Objectives]To select the virus-free Citrus reticulata Hongmeiren as test material to select rootstocks suitable for local cultivation,and to carry out demonstration and popularization of suitable rootstocks for planting C.reticulata Hongmeiren in the south bank of Hangzhou Bay.[Methods]The effects of different rootstocks on the survival rate,biological characteristics and fruit quality were analyzed by grafting onto three kinds of rootstocks,namely,C.unshiu Marc.cv.Owari,S.mandarin cv.Miyagawa wase and C.trifoliata L.[Results]The grafting survival rate for C.trifoliata L.was the highest;from the index of scion growth,the scion diameter,new shoot length,new shoot thickness and leaf area of C.unshiu Marc.cv.Owari were the largest,and the tree height of S.mandarin cv.Miyagawa wase was the highest;from the fruit quality index,the fruit quality of C.unshiu Marc.cv.Owari was the best.[Conclusions]C.unshiu Marc.cv.Owari is suitable as the preferred rootstock for virus-free C.reticulata Hongmeiren on the south bank of Hangzhou Bay,and can be demonstrated and promoted.