China's food security mainly depends on the core areas of food production.Under the dual constraints of resource scarcity and environmental degradation,improving the grain production efficiency of the main grain-p...China's food security mainly depends on the core areas of food production.Under the dual constraints of resource scarcity and environmental degradation,improving the grain production efficiency of the main grain-producing areas has become the fundamental way to strengthen the grain production capacity and improve the national food security capability,and to improve the efficiency of grain production in major grain-producing areas requires empirical support.This paper used the Super SBM model and the Malmquist index to measure the grain production efficiency of the main grain-producing areas from 2001 to 2020 from both static and dynamic perspectives,and compared the differences in grain production efficiency among different soil types and different provinces(autonomous regions)in the main grain-producing areas.The results showed that from 2001 to 2020,the grain production in the main grain-producing areas was in a relatively ineffective state,and the differences in grain production efficiency among different soil types and different provinces(autonomous regions)in the main grain-producing areas were obvious.The order of grain production efficiency in different soil types was black soil region>red-yellow soil region>paddy soil region>fluvo-aquic soil region,and the order of grain production efficiency of the provinces(autonomous regions)in the main grain-producing areas was Jilin>Heilongjiang>Inner Mongolia>Jiangxi>Hunan>Sichuan>Hubei>Jiangsu>Liaoning>Henan>Anhui>Shandong>Hebei.From 2001 to 2020,the total factor productivity of grain in the main grain-producing areas increased,but due to the trade-off between the technological progress and the growth of technical efficiency,the increase in the total factor productivity of grain in the main grain-producing areas was small,and the growth mainly came from the increase of input factors in this period.The total factor productivity of grain in Hebei,Heilongjiang,Liaoning,Jilin,Inner Mongolia,Shandong,Jiangsu,Henan and Anhui increased,but the increase was small,while the total factor productivity of grain in Jiangxi,Sichuan,Hunan and Hubei provinces declined.展开更多
[Objective]The aim was to study heterosis of N use efficiency for grain production (NUEg) of Brassica napus L. and provide theoretical basis for breeding N-efficient cultivars. [Method]Dry matter production and N co...[Objective]The aim was to study heterosis of N use efficiency for grain production (NUEg) of Brassica napus L. and provide theoretical basis for breeding N-efficient cultivars. [Method]Dry matter production and N content of six B.napus parents (Zheshuang 3,Yangyou 7,ZJ1,Shilijia,Ningyou 14 and Huyou 16) and their F1 combinations from 6 × 6 complete diallel cross in maturity stage under two N levels were measured; heterosis of NUEg,combining ability and heritability size were analyzed and calculated. [Result]The results showed that NUEg has obvious heterosis; combining ability variance analysis indicated that NUEg was mainly controlled by additive,dominant and cytoplasmic effects; genetic variance analysis showed that additive effects and dominance effects were all significant in low nitrogen fertilizer and dominance effects were significant in high nitrogen fertilizer. [Conclusion]NUEg of B.napus has obvious heterosis.展开更多
Land fragmentation is widely known to have an impact on farm performance. However, previous studies investigating this impact mainly focused on a single crop, and only limited data from China are available. This study...Land fragmentation is widely known to have an impact on farm performance. However, previous studies investigating this impact mainly focused on a single crop, and only limited data from China are available. This study considers multiple crops to identify the impact of land fragmentation(LF), as well as cropping system(CS), on farm productivity and the efficiency of grain producers in the North China Plain(NCP), using Cangxian County of Hebei Province as an example. Detailed household-and plot-level survey data are applied and four stochastic frontier and inefficiency models are developed. These models include different sets of key variables in either the production function or the inefficiency models, in order to investigate all possibilities of their influences on farm productivity and efficiency. The results show that LF plays a significant and detrimental role, affecting both productivity and efficiency. A positive effect is evident with respect to the CS variable, i.e., multiple cropping index(MCI), and the wheat-maize double CS, rather than the maize single CS, is usually associated with higher farm productivity and efficiency. In addition to LF and CS, four basic production input variables(labor, seed, pesticide and irrigation), also significantly affect farmers’ productivity, while the age of the household head and the ratio of the off-farm labor to total labor are significantly relevant to technical inefficiency. Policies geared toward the promotion of land transfer and the rational adjustment of cropping systems are recommended for boosting farm productivity and efficiency, and thus maintaining the food supply while mitigating the overexploitation of groundwater in the NCP.展开更多
基金Supported by Science of China University Journals(CUJS2021-027)China Agricultural Journals Website 2021(CAJW2021-033)。
文摘China's food security mainly depends on the core areas of food production.Under the dual constraints of resource scarcity and environmental degradation,improving the grain production efficiency of the main grain-producing areas has become the fundamental way to strengthen the grain production capacity and improve the national food security capability,and to improve the efficiency of grain production in major grain-producing areas requires empirical support.This paper used the Super SBM model and the Malmquist index to measure the grain production efficiency of the main grain-producing areas from 2001 to 2020 from both static and dynamic perspectives,and compared the differences in grain production efficiency among different soil types and different provinces(autonomous regions)in the main grain-producing areas.The results showed that from 2001 to 2020,the grain production in the main grain-producing areas was in a relatively ineffective state,and the differences in grain production efficiency among different soil types and different provinces(autonomous regions)in the main grain-producing areas were obvious.The order of grain production efficiency in different soil types was black soil region>red-yellow soil region>paddy soil region>fluvo-aquic soil region,and the order of grain production efficiency of the provinces(autonomous regions)in the main grain-producing areas was Jilin>Heilongjiang>Inner Mongolia>Jiangxi>Hunan>Sichuan>Hubei>Jiangsu>Liaoning>Henan>Anhui>Shandong>Hebei.From 2001 to 2020,the total factor productivity of grain in the main grain-producing areas increased,but due to the trade-off between the technological progress and the growth of technical efficiency,the increase in the total factor productivity of grain in the main grain-producing areas was small,and the growth mainly came from the increase of input factors in this period.The total factor productivity of grain in Hebei,Heilongjiang,Liaoning,Jilin,Inner Mongolia,Shandong,Jiangsu,Henan and Anhui increased,but the increase was small,while the total factor productivity of grain in Jiangxi,Sichuan,Hunan and Hubei provinces declined.
基金Supported by Agricultural Science &Technology Project of Jiangsu Province(BE2008369)~~
文摘[Objective]The aim was to study heterosis of N use efficiency for grain production (NUEg) of Brassica napus L. and provide theoretical basis for breeding N-efficient cultivars. [Method]Dry matter production and N content of six B.napus parents (Zheshuang 3,Yangyou 7,ZJ1,Shilijia,Ningyou 14 and Huyou 16) and their F1 combinations from 6 × 6 complete diallel cross in maturity stage under two N levels were measured; heterosis of NUEg,combining ability and heritability size were analyzed and calculated. [Result]The results showed that NUEg has obvious heterosis; combining ability variance analysis indicated that NUEg was mainly controlled by additive,dominant and cytoplasmic effects; genetic variance analysis showed that additive effects and dominance effects were all significant in low nitrogen fertilizer and dominance effects were significant in high nitrogen fertilizer. [Conclusion]NUEg of B.napus has obvious heterosis.
基金The National Key Research and Development Program of China (2016YFC0502103)The National Natural Science Foundation of China (41701092)。
文摘Land fragmentation is widely known to have an impact on farm performance. However, previous studies investigating this impact mainly focused on a single crop, and only limited data from China are available. This study considers multiple crops to identify the impact of land fragmentation(LF), as well as cropping system(CS), on farm productivity and the efficiency of grain producers in the North China Plain(NCP), using Cangxian County of Hebei Province as an example. Detailed household-and plot-level survey data are applied and four stochastic frontier and inefficiency models are developed. These models include different sets of key variables in either the production function or the inefficiency models, in order to investigate all possibilities of their influences on farm productivity and efficiency. The results show that LF plays a significant and detrimental role, affecting both productivity and efficiency. A positive effect is evident with respect to the CS variable, i.e., multiple cropping index(MCI), and the wheat-maize double CS, rather than the maize single CS, is usually associated with higher farm productivity and efficiency. In addition to LF and CS, four basic production input variables(labor, seed, pesticide and irrigation), also significantly affect farmers’ productivity, while the age of the household head and the ratio of the off-farm labor to total labor are significantly relevant to technical inefficiency. Policies geared toward the promotion of land transfer and the rational adjustment of cropping systems are recommended for boosting farm productivity and efficiency, and thus maintaining the food supply while mitigating the overexploitation of groundwater in the NCP.