The grain boundaries of polycrystalline oxygen ion conductors presented a blocking effect on the oxygen ionic transport across them. It was found that the apparent specific grain boundary conductivity was 2-3 orders o...The grain boundaries of polycrystalline oxygen ion conductors presented a blocking effect on the oxygen ionic transport across them. It was found that the apparent specific grain boundary conductivity was 2-3 orders of magnitude lower than the bulk conductivity in the temperature range of 200-500 °C for normal purity Ce0.85Sm0.15O1.925 (SDC) with an average grain size of 320-580 nm. The apparent specific grain boundary conductivity increased with decreasing average grain size. It was found that the space charge potential was nearly independent of grain size, and the reason was analyzed. The increase of the conduction path width was responsible for the increase in the apparent specific grain boundary conductivity.展开更多
基金Project supported by the National Natural Science Foundation of China (50872041)the National Foundation for Fostering Talent in Basic Science of China ( J0730311)
文摘The grain boundaries of polycrystalline oxygen ion conductors presented a blocking effect on the oxygen ionic transport across them. It was found that the apparent specific grain boundary conductivity was 2-3 orders of magnitude lower than the bulk conductivity in the temperature range of 200-500 °C for normal purity Ce0.85Sm0.15O1.925 (SDC) with an average grain size of 320-580 nm. The apparent specific grain boundary conductivity increased with decreasing average grain size. It was found that the space charge potential was nearly independent of grain size, and the reason was analyzed. The increase of the conduction path width was responsible for the increase in the apparent specific grain boundary conductivity.