期刊文献+
共找到2,610篇文章
< 1 2 131 >
每页显示 20 50 100
Effects of water and nitrogen rate on grain-filling characteristics under high-low seedbed cultivation in winter wheat
1
作者 Junming Liu Zhuanyun Si +6 位作者 Shuang Li Lifeng Wu Yingying Zhang Xiaolei Wu Hui Cao Yang Gao Aiwang Duan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期4018-4031,共14页
A high-efficiency mode of high-low seedbed cultivation(HLSC)has been listed as the main agricultural technology to increase land utilization ratio and grain yield in Shandong Province,China.However,limited information... A high-efficiency mode of high-low seedbed cultivation(HLSC)has been listed as the main agricultural technology to increase land utilization ratio and grain yield in Shandong Province,China.However,limited information is available on the optimized water and nitrogen management for yield formation,especially the grain-filling process,under HLSC mode.A three-year field experiment with four nitrogen rates and three irrigation rates of HLSC was conducted to reveal the response of grain-filling parameters,grain weight percentage of spike weight(GPS),spike moisture content(SMC),and winter wheat yield to water and nitrogen rates.The four nitrogen rates were N1(360 kg ha^(-1) pure N),N2(300 kg ha^(-1) pure N),N3(240 kg ha^(-1) pure N),and N4(180 kg ha^(-1) pure N),respectively,and the three irrigation quotas were W1(120 mm),W2(90 mm),and W3(60 mm),respectively.Results showed that the determinate growth function generally performed well in simulating the temporal dynamics of grain weight(0.989<R^(2)<0.999,where R2 is the determination coefficient).The occurrence time of maximum filling rate(T_(max))and active grain-filling period(AGP)increased with the increase in the water or nitrogen rate,whereas the average grain-filling rate(G_(mean))had a decreasing trend.The final 1,000-grain weight(FTGW)increased and then decreased with the increase in the nitrogen rates and increased with the increase in the irrigation rates.The GPS and SMC had a highly significant quadratic polynomial relationship with grain weight and days after anthesis.Nitrogen,irrigation,and year significantly affected the T_(max),AGP,G_(mean),and FTGW.Particularly,the AGP and FTGW were insignificantly different between high seedbed(HLSC-H)and low seedbed(HLSC-L)across the water and nitrogen levels.Moreover,the moderate water and nitrogen supply was more beneficial for grain yield,as well as for spike number and grain number per hectare.The principal component analysis indicated that combining 240-300 kg N ha^(-1) and 90^(-1)20 mm irrigation quota could improve grain-filling efficiency and yield for the HLSC-cultivated winter wheat. 展开更多
关键词 high-low seedbed cultivation water and nitrogen grain filling determinate growth equation wheat yield
下载PDF
Enriching Iodine and Regulating Grain Aroma,Appearance Quality,and Yield in Aromatic Rice by Foliar Application of Sodium Iodide
2
作者 HONG Weiyuan DUAN Meiyang +5 位作者 WANG Yifei CHEN Yongjian MO Zhaowen QI Jianying PAN Shenggang TANG Xiangru 《Rice science》 SCIE CSCD 2024年第3期328-342,I0046-I0054,共24页
Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective approach for iodine supplementation,especially for aromatic rice.Field experiments were conducted during the early growing se... Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective approach for iodine supplementation,especially for aromatic rice.Field experiments were conducted during the early growing seasons of 2021 and 2022 to evaluate the impacts of foliar application of iodine fertilizer on aromatic rice and to explore the optimal iodine fertilizer concentration.At the full heading stage,six different concentrations of sodium iodide solutions of 0%(CK),0.010%(T1),0.025%(T2),0.050%(T3),0.075%(T4),and 0.100%(T5)were applied to indica aromatic rice cultivars Meixiangzhan 2 and Xiangyaxiangzhan.The results showed that sodium iodide treatments significantly increased the iodine and sodium contents in both leaves and grains.Compared with the CK,the T1 and T2 treatments increased the 2-acetyl-1-pyrroline(2-AP)content in mature grains by 8.41%-101.66%and 13.58%-74.60%,respectively.Improvements in the contents of 1-pyrroline-5-carboxylic acid,proline,1-pyrroline,and methylglyoxal,as well as the activity of proline dehydrogenase were also detected.Additionally,sodium iodide treatments remarkably decreased the chalky grain rate,chalkiness area,and chalkiness degree of aromatic rice,with the T2 treatment exhibiting a 17.79%-47.42%decrease in chalkiness degree compared with the CK.Meanwhile,T1 and T2 treatments showed beneficial impacts on chlorophyll content,photosynthetic characteristics,and yield components,while T3,T4,and T5 treatments exhibited adverse effects on leaf and grain yields.The linear discriminant analysis revealed significant differences between treatments.The correlation analysis and piecewise structural equation modeling showed that the iodine and sodium influenced the photosynthetic characteristics and chlorophyll content of the leaves,thereby regulating the 2-AP biosynthesis and yield components,ultimately affecting the 2-AP content and yield.Overall,this study suggests that foliar application of 0.025%sodium iodide is an effective method to enrich the iodine content in rice grains,improve the grain aroma and appearance quality of aromatic rice,without detrimental effects on grain yield. 展开更多
关键词 2-acetyl-1-pyrroline appearance quality aromatic rice foliar application grain yield IODINE
下载PDF
A novel Effective Panicle Number per Plant 4 haplotype enhances grain yield by coordinating panicle number and grain number in rice
3
作者 Yun Wang Xiaoqian Wang +6 位作者 Laiyuan Zhai Sundus Zafar Congcong Shen Shuangbing Zhu Kai Chen Yun Wang Jianlong Xu 《The Crop Journal》 SCIE CSCD 2024年第1期202-212,共11页
Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-... Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-wide association analysis to identify the EPN4 gene,which is allelic to NARROW LEAF1(NAL1).Overexpression lines containing the Teqing allele(TQ)of EPN4 had significantly increased EPN.NIL-EPN4^(TQ) in japonica(geng)cultivar Lemont(LT)exhibited significantly improved EPN but decreased grain number and flag leaf size relative to LT.Haplotype analysis indicated that accessions with EPN4-1 had medium EPN,medium grain number,and medium grain weight,but had the highest grain yield among seven haplotypes,indicating that EPN4-1 is an elite haplotype of EPN4 for positive coordination of the three components of grain yield.Furthermore,accessions carrying the combination of EPN4-1 and haplotype GNP1-6 of GNP1 for grain number per panicle showed higher grain yield than those with other allele combinations.Therefore,pyramiding of EPN4-1 and GNP1-6 could be a preferred approach to obtain high yield potential in breeding. 展开更多
关键词 rice Effective panicle number per plant grain number per panicle HAPLOTYPE grain yield potential
下载PDF
The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice
4
作者 Hanzhu Gu Xian Wang +10 位作者 Minhao Zhang Wenjiang Jing Hao Wu Zhilin Xiao Weiyang Zhang Junfei Gu Lijun Liu Zhiqin Wang Jianhua Zhang Jianchang Yang Hao Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1879-1896,共18页
Integrative cultivation practices(ICPs)are essential for enhancing cereal yield and resource use efficiency.However,the effects of ICP on the rhizosphere environment and roots of paddy rice are still poorly understood... Integrative cultivation practices(ICPs)are essential for enhancing cereal yield and resource use efficiency.However,the effects of ICP on the rhizosphere environment and roots of paddy rice are still poorly understood.In this study,four rice varieties were produced in the field.Each variety was treated with six different cultivation techniques,including zero nitrogen application(0 N),local farmers’practice(LFP),nitrogen reduction(NR),and three progressive ICP techniques comprised of enhanced fertilizer N practice and increased plant density(ICP1),a treatment similar to ICP1 but with alternate wetting and moderate drying instead of continuous flooding(ICP2),and the same practices as ICP2 with the application of organic fertilizer(ICP3).The ICPs had greater grain production and nitrogen use efficiency than the other three methods.Root length,dry weight,root diameter,activity of root oxidation,root bleeding rate,zeatin and zeatin riboside compositions,and total organic acids in root exudates were elevated with the introduction of the successive cultivation practices.ICPs enhanced nitrate nitrogen,the activities of urease and invertase,and the diversity of microbes(bacteria)in rhizosphere and non-rhizosphere soil,while reducing the ammonium nitrogen content.The nutrient contents(ammonium nitrogen,total nitrogen,total potassium,total phosphorus,nitrate,and available phosphorus)and urease activity in rhizosphere soil were reduced in all treatments in comparison with the non-rhizosphere soil,but the invertase activity and bacterial diversity were greater.The main root morphology and physiology,and the ammonium nitrogen contents in rhizosphere soil at the primary stages were closely correlated with grain yield and internal nitrogen use efficiency.These findings suggest that the coordinated enhancement of the root system and the environment of the rhizosphere under integrative cultivation approaches may lead to higher rice production. 展开更多
关键词 rice(Oryza sativa L.) nitrogen use efficiency grain yield integrative cultivation practices ROOTS
下载PDF
Field Experiment for the Effects of Rice Straw Returning and Seeding Pattern on Wheat Seedling Emergence and Grain Yield 被引量:4
5
作者 张斯梅 顾克军 +6 位作者 樊平声 许博 张传辉 顾东祥 张恒敢 于建光 杨四军 《Agricultural Science & Technology》 CAS 2017年第12期2357-2361,2382,共6页
In order to study the effect of rice straw returning and seeding patterns on seedling emergence and grain yield, field experiment was conducted to investi- gate the effects of straw mechanized returning and different ... In order to study the effect of rice straw returning and seeding patterns on seedling emergence and grain yield, field experiment was conducted to investi- gate the effects of straw mechanized returning and different seeding patterns on e- mergence rate, emergence uniformity and yield traits of wheat after rice. The results were as follows: in rice straw removal treatments, the emergence rate of mechani- cal seeding in drill was lower than that of mechanical uniform planting and manual broadcast sowing, which were 51.84%, 90.89% and 88.87%, respectively; the emer- gence uniformity of manual broadcast sowing was inferior to mechanical seeding in drill and mechanical uniform planting, which were 0.49, 0.26 and 0.23, respectively. As for the treatments with rice straw returning to the field, the emergence rate and emergence uniformity all decreased in the three seeding patterns, of which mechan- ical seeding in drill dropped markedly with emergence rate decreased by 36.54%. The emergence rate and emergence uniformity affected grain yield by affecting pan- icle, grains per spike and 1 000-grain weight. The grain yield for the treatment with rice straw removal was 6 091.34 kg/hm2, while that with rice straw returning to field was 6 476.20 kg/hm2, and both were higher than the yields of the other two seed- ing patterns. Therefore, mechanical uniform planting was?recommended for its higher emergence rate, better emergence uniformity, which was conductive to increase grain yield in wheat after rice production with rice straw returning to field. 展开更多
关键词 Straw returning Seeding pattern wheat after rice Seedling emergence YIELD
下载PDF
Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China 被引量:3
6
作者 WANG Xin-yu YANG Guo-dong +4 位作者 XU Le XIANG Hong-shun YANG Chen WANG Fei PENG Shao-bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1009-1020,共12页
Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season... Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season rice(DDR) in Central China. The objective of this study was to evaluate the effects of various N and seeding rates on the grain yield and NUE of an ultrashort-duration variety grown under DDR. Field experiments were conducted in 2018 in Wuxue County and 2019 in Qichun County, Hubei Province, China with four N rates and three seeding rates.The results showed that the grain yield of the ultrashort-duration variety ranged from 6.32 to 8.23 t ha–1with a total growth duration of 85 to 97 days across all treatments with N application. Grain yield was increased significantly by N application in most cases, but seeding rate had an inconsistent effect on grain yield. Furthermore, the response of grain yield to the N rates was much higher than the response to seeding rates. The moderate N rates of 100–150 and 70–120 kg N ha–1in the early and late seasons, respectively, could fully express the yield potential of the ultrashort-duration variety grown under DDR. Remarkably higher N responses and agronomic NUE levels were achieved in the early-season rice compared with the late-season rice due to the difference in indigenous soil N supply capacity(INS) between the two seasons. Seasonal differences in INS and N response should be considered when crop management practices are optimized for achieving high grain yield and NUE in ultrashort-duration variety grown under DDR. 展开更多
关键词 direct-seeded and double-season rice grain yield nitrogen rate nitrogen use efficiency seeding rate
下载PDF
Translocation and Distribution of Carbon-Nitrogen in Relation to Rice Yield and Grain Quality as Affected by High Temperature at Early Panicle Initiation Stage 被引量:2
7
作者 JI Dongling XIAO Wenhui +8 位作者 SUN Zhiwei LIU Lijun GU Junfei ZHANG Hao Matthew Tom HARRISON LIU Ke WANG Zhiqin WANG Weilu YANG Jianchang 《Rice science》 SCIE CSCD 2023年第6期598-612,共15页
Due to climate change, extreme heat stress events have become more frequent, adversely affecting rice yield and grain quality. The accumulation and translocation of dry matter and nitrogen substances are essential for... Due to climate change, extreme heat stress events have become more frequent, adversely affecting rice yield and grain quality. The accumulation and translocation of dry matter and nitrogen substances are essential for rice yield and grain quality. To assess the impact of high temperature stress(HTS) at the early panicle initiation(EPI) stage on the accumulation, transportation, and distribution of dry matter and nitrogen substances in various organs of rice, as well as the resulting effects on rice yield and grain quality, pot experiments were conducted using an indica rice cultivar Yangdao 6(YD6) and a japonica rice cultivar Jinxiangyu 1(JXY1) under both normal temperature(32 ℃/26 ℃) and high temperature(38 ℃/29 ℃) conditions. The results indicated that exposure to HTS at the EPI stage significantly decreased rice yield by reducing spikelet number per panicle, grain-filling rate, and grain weight. However, it improved the nutritional quality of rice grains by increasing protein and amylose contents. The reduction in nitrogen and dry matter accumulation accounted for the changes in spikelet number per panicle, grain-filling rate, and grain size. Under HTS, the decrease in nitrogen accumulation accompanied by the reduction in dry matter may be due to the down-regulation of leaf net photosynthesis and senescence, as evidenced by the decrease in nitrogen content. Furthermore, the decrease in sink size limited the translocation of dry matter and nitrogen substances to grains, which was closely related to the reduction in grain weight and the deterioration of grain quality. These findings significantly contribute to our understanding of the mechanisms of HTS on grain yield and quality formation from the perspective of dry matter and nitrogen accumulation and translocation. Further efforts are needed to improve the adaptability of rice varieties to climate change in the near future. 展开更多
关键词 rice early panicle initiation stage high temperature stress carbon-nitrogen translocation grain yield grain quality
下载PDF
Co-overexpression of genes for nitrogen transport, assimilation, and utilization boosts rice grain yield and nitrogen use efficiency 被引量:2
8
作者 Jie Luo Junnan Hang +3 位作者 Bilong Wu Xilin Wei Quanzhi Zhao Zhongming Fang 《The Crop Journal》 SCIE CSCD 2023年第3期785-799,共15页
Nitrogen(N)fertilization is necessary for obtaining high rice yield.But excessive N fertilizer reduces rice plant N efficiency and causes negative effects such as environmental pollution.In this study,we assembled key... Nitrogen(N)fertilization is necessary for obtaining high rice yield.But excessive N fertilizer reduces rice plant N efficiency and causes negative effects such as environmental pollution.In this study,we assembled key genes involved in different nodes of N pathways to boost nitrate and ammonium uptake and assimilation,and to strengthen amino acid utilization to increase grain yield and nitrogen use efficiency(NUE)in rice.The combinations OsNPF8.9a×OsNR2,OsAMT1;2×OsGS1;2×OsAS1,and OsGS2×OsAS2×OsANT3 optimized nitrate assimilation,ammonium conversion,and N reutilization,respectively.In co-overexpressing rice lines obtained by co-transformation,the tiller number,biomass,and grain yield per plant of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of wild-type ZH11,the OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line,and the OsGS2×OsAS2×OsANT3-overexpressing line.The glutamine synthase activity,free amino acids,and nitrogen utilization efficiency(NUt E)of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of ZH11 and other lines that combined key genes.N influx efficiency was increased in the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line and OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line under a low ammonium and a low nitrate treatment,respectively.We propose that combining overexpression of OsAMT1;2,OsGS1;2,and OsAS1 is a promising breeding strategy for systematically increasing rice grain yield and NUE by focusing on key nodes in the N pathway. 展开更多
关键词 Nitrogen rice tillering grain yield Nitrogen use efficiency CO-TRANSFORMATION
下载PDF
Differing responses of root morphology and physiology to nitrogen application rates and their relationships with grain yield in rice 被引量:2
9
作者 Kun Liu Yun Chen +6 位作者 Siyu Li Weilu Wang Weiyang Zhang Hao Zhang Junfei Gu Jianchang Yang Lijun Liu 《The Crop Journal》 SCIE CSCD 2023年第2期618-627,共10页
Root morphology and physiology influence aboveground growth and yield formation in rice.However,root morphological and physiological differences among rice varieties with differing nitrogen(N)sensitivities and their r... Root morphology and physiology influence aboveground growth and yield formation in rice.However,root morphological and physiological differences among rice varieties with differing nitrogen(N)sensitivities and their relationship with grain yield are still unclear.In this study,rice varieties differing in N sensitivity over many years of experiments were used.A field experiment with multiple N rates(0,90,180,270,and 360 kg ha^(-1))was conducted to elucidate the effects of N application on root morphology,root physiology,and grain yield.A pot experiment with root excision and exogenous application of 6-benzyladenine(6-BA)at heading stage was used to further verify the above effects.The findings revealed that(1)under the same N application rate,N-insensitive varieties(NIV)had relatively large root biomass(root dry weight,length,and number).Grain yield was associated with root biomass in NIV.The oxidation activity and zeatin(Z)+zeatin riboside(ZR)contents in roots obviously and positively correlated with grain yield in N-sensitive varieties(NSV),and accounted for its higher grain yield than that of NIV at lower N application rates(90 and 180 kg ha^(-1)).(2)The root dry weight required for equal grain yield of NIV was greater than that of NSV.Excision of 1/10 and 1/8 of roots at heading stage had no discernible effect on the yield of Liangyoupeijiu(NIV),and it significantly reduced yield by 11.5%and 21.3%in Tianyouhuazhan(NSV),respectively,compared to the treatment without root excision.The decrease of filled kernels and grain weight after root excision was the primary cause for the yield reduction.Root excision and exogenous 6-BA application after root excision had little influence on the root activity of NIV.The oxidation activity and Z+ZR contents in roots of NSV decreased under root excision,and the increase in the proportion of excised roots aggravated these effects.The application of exogenous 6-BA increased the root activity of NSV and increased filled kernels and grain weight,thereby reducing yield loss after root excision.Thus,the root biomass of NIV was large,and there may be a phenomenon of"root growth redundancy."Vigorous root activity was an essential feature of NSV.Selecting rice varieties with high root activity or increasing root activity by cultivation measures could lead to higher grain yield under lower N application rates. 展开更多
关键词 rice(Oryza sativa L.)varieties Nitrogen(N)application rate grain yield Root morphology and physiology N sensitivities
下载PDF
Grain yield,nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to various nitrogen rates 被引量:1
10
作者 ZHOU Qun YUAN Rui +5 位作者 ZHANG Wei-yang GU Jun-fei LIU Li-jun ZHANG Hao WANG Zhi-qin YANG Jian-chang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期63-79,共17页
Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of ... Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of IJHR to achieve its great yield potential.However,the responses of the grain yield and N utilization of IJHR to N application rates and the underlying physiological mechanism remain elusive.The purpose of this study was to clarify these issues.Three rice cultivars currently used in rice production,an IJHR cultivar Yongyou 2640(YY2640),a japonica cultivar Lianjing 7(LJ-7)and an indica cultivar Yangdao 6(YD-6),were grown in the field with six N rates(0,100,200,300,400,and 500 kg ha^(-1))in 2018 and 2019.The results showed that with the increase in N application rates,the grain yield of each test cultivar increased at first and then decreased,and the highest grain yield was at the N rate of 400 kg ha^(-1)for YY2640,with a grain yield of 13.4 t ha^(-1),and at 300 kg ha^(-1)for LJ-7 and YD-6,with grain yields of 9.4–10.6 t ha^(-1).The grain yield and N use efficiency(NUE)of YY2640 were higher than those of LJ-7 or YD-6 at the same N rate,especially at the higher N rates.When compared with LJ-7 or YD-6,YY2640 exhibited better physiological traits,including greater root oxidation activity and leaf photosynthetic rate,higher cytokinin content in the roots and leaves,and more remobilization of assimilates from the stem to the grain during grain filling.The results suggest that IJHR could attain both higher grain yield and higher NUE than inbred rice at either low or high N application rates.Improved shoot and root traits of the IJHR contribute to its higher grain yield and NUE,and a higher content of cytokinins in the IJHR plants plays a vital role in their responses to N application rates and also benefits other physiological processes. 展开更多
关键词 indica/japonica hybrid rice grain yield nitrogen use efficiency CYTOKININS non-structural carbohydrate root activity
下载PDF
Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality
11
作者 WEI Huan-he GE Jia-lin +6 位作者 ZHANG Xu-bin ZHU Wang DENG Fei REN Wan-jun CHEN Ying-long MENG Tian-yao DAI Qi-gen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第7期2041-2053,共13页
Light deficiency is a growing abiotic stress in rice production.However,few studies focus on shading effects on grain yield and quality of rice in East China.It is also essential to investigate proper nitrogen(N)appli... Light deficiency is a growing abiotic stress in rice production.However,few studies focus on shading effects on grain yield and quality of rice in East China.It is also essential to investigate proper nitrogen(N)application strategies that can effectively alleviate the negative impacts of light deficiency on grain yield and quality in rice.A two-year field experiment was conducted to explore the effects of shading(non-shading and shading from heading to maturity)and panicle N application(NDP,decreased panicle N rate;NMP,medium panicle N rate;NIP,increased panicle N rate)treatments on rice yield-and quality-related characteristics.Compared with non-shading,shading resulted in a 9.5-14.8%yield loss(P<0.05),mainly due to lower filled-grain percentage and grain weight.NMP and NIP had higher(P<0.05)grain yield than NDP under non-shading,and no significant difference was observed in rice grain yield among NDP,NMP,and NIP under shading.Compared with NMP and NIP,NDP achieved less yield loss under shading because of the increased filled-grain percentage and grain weight.Shading reduced leaf photosynthetic rate after heading,as well as shoot biomass weight at maturity,shoot biomass accumulation from heading to maturity,and nonstructural carbohydrate(NSC)content in the stem at maturity(P<0.05).The harvest index and NSC remobilization reserve of NDP were increased under shading.Shading decreased(P<0.05)percentages of brown rice,milled rice,head rice,and amylose content while increasing(P<0.05)chalky rice percentage,chalky area,chalky degree,and grain protein.NMP demonstrated a better milling quality under non-shading,while NDP demonstrated under shading.NDP exhibited both lower chalky rice percentage,chalky area,and chalky degree under non-shading and shading,compared with NMP and NIP.NDP under shading decreased amylose content and breakdown but increased grain protein content and setback,contributing to similar overall palatability to non-shading.Our results suggested severe grain yield and quality penalty of rice when subjected to shading after heading.NDP improved NSC remobilization,harvest index,and sink-filling efficiency and alleviated yield loss under shading.Besides,NDP would maintain rice’s milling,appearance,and cooking and eating qualities under shading.Proper N management with a decreased panicle N rate could be adopted to mitigate the negative effects of shading on rice grain yield and quality. 展开更多
关键词 rice grain yield grain quality SHADING panicle N application
下载PDF
Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity
12
作者 DU Xiang-bei XI Min +3 位作者 WEI Zhi CHEN Xiao-fei WU Wen-ge KONG Ling-cong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1631-1644,共14页
The yield of wheat in wheat–rice rotation cropping systems in the Yangtze River Plain, China, is adversely impacted by waterlogging. A raised bed planting(RBP) pattern may reduce waterlogging and increase the wheat y... The yield of wheat in wheat–rice rotation cropping systems in the Yangtze River Plain, China, is adversely impacted by waterlogging. A raised bed planting(RBP) pattern may reduce waterlogging and increase the wheat yield after rice cultivation by improving the grain number per spike. However, the physiological basis for grain formation under RBP conditions remains poorly understood. The present study was performed over two growing seasons(2018/2019and 2019/2020) to examine the effects of the planting pattern(i.e., RBP and flat planting(FP)) on the floret and grain formation features and leaf photosynthetic source characteristics of wheat. The results indicated that implementation of the RBP pattern improved the soil–plant nitrogen(N) supply during floret development, which facilitated balanced floret development, resulting in a 9.5% increase in the number of fertile florets per spike. Moreover, the RBP pattern delayed wheat leaf senescence and increased the photosynthetic source capacity by 13.9%, which produced more assimilates for grain filling. Delayed leaf senescence was attributed to the resultant high leaf N content and enhanced antioxidant metabolism. Correspondingly, under RBP conditions, 7.6–8.6% more grains per spike were recorded, and the grain yield was ultimately enhanced by 10.4–12.7%. These results demonstrate that the improvement of the spike differentiation process and the enhancement of the leaf photosynthetic capacity were the main reasons for the increased grain number per spike of wheat under the RBP pattern, and additional improvements in this technique should be achievable through further investigation. 展开更多
关键词 grain number floret development photosynthetic capacity wheat grown after rice
下载PDF
Quantifying major sources of uncertainty in projecting the impact of climate change on wheat grain yield in dryland environments
13
作者 Reza DEIHIMFARD Sajjad RAHIMI-MOGHADDAM +1 位作者 Farshid JAVANSHIR Alireza PAZOKI 《Journal of Arid Land》 SCIE CSCD 2023年第5期545-561,共17页
Modelling the impact of climate change on cropping systems is crucial to support policy-making for farmers and stakeholders.Nevertheless,there exists inherent uncertainty in such cases.General Circulation Models(GCMs)... Modelling the impact of climate change on cropping systems is crucial to support policy-making for farmers and stakeholders.Nevertheless,there exists inherent uncertainty in such cases.General Circulation Models(GCMs)and future climate change scenarios(different Representative Concentration Pathways(RCPs)in different future time periods)are among the major sources of uncertainty in projecting the impact of climate change on crop grain yield.This study quantified the different sources of uncertainty associated with future climate change impact on wheat grain yield in dryland environments(Shiraz,Hamedan,Sanandaj,Kermanshah and Khorramabad)in eastern and southern Iran.These five representative locations can be categorized into three climate classes:arid cold(Shiraz),semi-arid cold(Hamedan and Sanandaj)and semi-arid cool(Kermanshah and Khorramabad).Accordingly,the downscaled daily outputs of 29 GCMs under two RCPs(RCP4.5 and RCP8.5)in the near future(2030s),middle future(2050s)and far future(2080s)were used as inputs for the Agricultural Production Systems sIMulator(APSIM)-wheat model.Analysis of variance(ANOVA)was employed to quantify the sources of uncertainty in projecting the impact of climate change on wheat grain yield.Years from 1980 to 2009 were regarded as the baseline period.The projection results indicated that wheat grain yield was expected to increase by 12.30%,17.10%,and 17.70%in the near future(2030s),middle future(2050s)and far future(2080s),respectively.The increases differed under different RCPs in different future time periods,ranging from 11.70%(under RCP4.5 in the 2030s)to 20.20%(under RCP8.5 in the 2080s)by averaging all GCMs and locations,implying that future wheat grain yield depended largely upon the rising CO2 concentrations.ANOVA results revealed that more than 97.22% of the variance in future wheat grain yield was explained by locations,followed by scenarios,GCMs,and their interactions.Specifically,at the semi-arid climate locations(Hamedan,Sanandaj,Kermanshah and Khorramabad),most of the variations arose from the scenarios(77.25%),while at the arid climate location(Shiraz),GCMs(54.00%)accounted for the greatest variation.Overall,the ensemble use of a wide range of GCMs should be given priority to narrow the uncertainty when projecting wheat grain yield under changing climate conditions,particularly in dryland environments characterized by large fluctuations in rainfall and temperature.Moreover,the current research suggested some GCMs(e.g.,the IPSL-CM5B-LR,CCSM4,and BNU-ESM)that made moderate effects in projecting the impact of climate change on wheat grain yield to be used to project future climate conditions in similar environments worldwide. 展开更多
关键词 wheat grain yield climate change Agricultural Production Systems sIMulator(APSIM)-wheat model General Circulation Models(GCMs) arid climate semi-arid climate Iran
下载PDF
Wheat Straw Burial Improves Physiological Traits, Yield and Grain Quality of Rice by Regulating Antioxidant System and Nitrogen Assimilation Enzymes under Alternate Wetting and Drying Irrigation
14
作者 Yousef ALHAJ HAMOUD Hiba SHAGHALEH +5 位作者 WANG Ruke Willy Franz GOUERTOUMBO Amar Ali ADAM HAMAD Mohamed Salah SHETEIWY WANG Zhenchang GUO Xiangping 《Rice science》 SCIE CSCD 2022年第5期473-488,共16页
Wheat straw burial has great potential to sustain rice production under alternate wetting and drying(AWD)irrigation.A field experiment was conducted with three wheat straw burial treatments,including without straw bur... Wheat straw burial has great potential to sustain rice production under alternate wetting and drying(AWD)irrigation.A field experiment was conducted with three wheat straw burial treatments,including without straw burial(NSB),with light straw burial of 300 kg/hm^(2)(LSB)and dense straw burial of 800 kg/hm^(2)(DSB),as well as three AWD regimes:alternate wetting/moderate drying(AWMD),alternate wetting/severe drying(AWSD)and alternate wetting/critical drying(AWCD).The rice growth and grain quality were higher in LSB and NSB than those in NSB under the same AWD regime.The AWMD×DSB treatment resulted in the highest yield,brown rice rate,milled rice rate,amylose content and protein content.Conversely,the AWCD×NSB treatment led to the lowest yield,brown rice rate,milled rice rate,amylose content and protein content.The active absorption area and nitrate reductase activity of roots were higher in the AWMD×DSB treatment than those in the AWCD×NSB treatment,as the former increased organic carbon and nitrogen contents in the rhizosphere,whereas the latter reduced their availability.Total soluble protein content and glutamine synthetase activity were greater in the AWMD×DSB treatment than those in the AWCD×NSB treatment.The activities of superoxide dismutase and catalase were higher in the AWMD×DSB treatment compared with the AWCD×NSB treatment,leading to the amelioration of oxidative cell injury,as shown by a lower malonaldehyde level.This study suggested that farmers should implement AWMD irrigation after leaving the straw residues in the field,followed by deep tillage to improve soil quality and mitigate the drought stress cycles of AWD.This approach can improve rice growth and grain quality and alleviate the problems of disposal of straw residues and water scarcity for sustainable rice production. 展开更多
关键词 antioxidant enzyme activity wheat straw burial irrigation regime nitrogen uptake Oryza sativa grain quality YIELD
下载PDF
Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions 被引量:1
15
作者 Tingcheng Zhao Aibin He +3 位作者 Mohammad Nauman Khan Qi Yin Shaokun Song Lixiao Nie 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期93-107,共15页
Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer u... Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection. 展开更多
关键词 colored rice organic fertilizer soil quality grain yield ANTHOCYANIN
下载PDF
OsNPF3.1,a nitrate,abscisic acid and gibberellin transporter gene,is essential for rice tillering and nitrogen utilization efficiency
16
作者 Junnan Hang Bowen Wu +3 位作者 Diyang Qiu Guo Yang Zhongming Fang Mingyong Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1087-1104,共18页
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ... Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively. 展开更多
关键词 rice tillering grain yield PHYTOHORMONE NITRATE transporter nitrogen utilization efficiency
下载PDF
Border effects of the main and ratoon crops in the rice ratooning system 被引量:3
17
作者 ZHENG Chang WANG Yue-chao +5 位作者 XU Wen-ba YANG De-sheng YANG Guo-dong YANG Chen HUANG Jian-liang PENG Shao-bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期80-91,共12页
The border effect(BE)is widely observed in crop field experiments,and it has been extensively studied in many crops.However,only limited attention has been paid to the BE of ratoon rice.We conducted field experiments ... The border effect(BE)is widely observed in crop field experiments,and it has been extensively studied in many crops.However,only limited attention has been paid to the BE of ratoon rice.We conducted field experiments on ratoon rice in Qichun County,Hubei Province,Central China in 2018 and 2019 to compare the BE in the main and ratoon crops,and to quantify the contribution of BE in the main crop to that in the ratoon crop.The BE of two hybrid varieties was measured for the outermost,second outermost,and third outermost rows in each plot of both crops.To determine the contribution of BE between the two crops,portions of hills in the outermost and second outermost rows were uprooted during the harvest of the main crop so that the second and third outermost rows then became the outermost rows in the ratoon crop.Overall,the BE on grain yield was greater in the main crop than in the ratoon crop.In the main crop,the BE on grain yield was 98.3%in the outermost row,which was explained by the BE on panicles m^(–2),spikelets/panicle,spikelets m^(–2),and total dry weight.In the ratoon crop,the BE on grain yield was reduced to 60.9 and 27.6%with and without the contribution of the BE in the main crop,respectively.Consequently,55.1%of the BE on grain yield in the ratoon crop was contributed from the main crop.High stubble dry weight and non-structural carbohydrate(NSC)accumulation at the harvest of the main crop were responsible for the contribution of BE in the main crop to that in the ratoon crop.Our results suggest that increases in stubble dry weight and NSC accumulation at the harvest of the main crop could be important strategies for developing high-yielding cropping practices in the rice ratooning system. 展开更多
关键词 border effect grain yield non-structural carbohydrate ratoon rice
下载PDF
Effects of planting patterns plastic film mulching on soil temperature,moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China 被引量:2
18
作者 ZHAO Xiao-dong QIN Xiao-rui +2 位作者 LI Ting-liang CAO Han-bing XIE Ying-he 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第5期1560-1573,共14页
The yield of winter wheat is hindered by drought and low temperature in the Loess Plateau of China.Two common mulching methods to conserve soil moisture,ridge furrows with plastic film mulching (RP) and flat soil surf... The yield of winter wheat is hindered by drought and low temperature in the Loess Plateau of China.Two common mulching methods to conserve soil moisture,ridge furrows with plastic film mulching (RP) and flat soil surfaces with plastic film mulching (FP) are helpful for wheat production.Our previous study indicated that FP could improve wheat yield more effectively than RP,but the reason remains unclear.The effect of mulching method on functional bacteria also needs to be further studied.In this study,winter wheat was employed to evaluate the impacts of mulching method on soil temperature,moisture content,microorganisms and grain yield.The results showed that FP had a warming effect when the soil temperature was low and a cooling effect when the temperature was too high.However,the ability to regulate soil temperature in the RP method was unstable and varied with year.The lowest negative accumulated soil temperature was found in the FP treatment,which was 20–89 and 43–99%lower than that of the RP and flat sowing with non-film mulching control (NP) treatments,respectively.Deep soil moisture was better transferred to topsoil for wheat growth in the FP and RP treatments than the NP treatment,which made the topsoil moisture in the two treatments (especially FP) more sufficient than that in the NP treatment during the early growing stage of wheat.However,due to the limited water resources in the study area,there was almost no difference between treatments in topsoil water storage during the later stage.The wheat yield in the FP treatment was significantly higher,by 12–16and 23–56%,respectively,than in the RP and NP treatments.Significant positive correlations were observed among the negative accumulated soil temperature,spike number and wheat yield.The Chao1 and Shannon indices in the RP treatment were 17 and 3.9%higher than those in the NP treatment,respectively.However,according to network relationship analysis,the interspecific relationships of bacteria were weakened in the RP treatment.Phosphorus solubilizing,ammonification and nitrification bacteria were more active in the RP than in the FP treatment,and microbes with nitrate reduction ability and plant pathogens were inhibited in the RP treatment,which improved nutrient availability and habitat for wheat. 展开更多
关键词 WINTER wheat soil temperature MOISTURE functional bacteria grain YIELD
下载PDF
Late spring cold reduces grain number at various spike positions by regulating spike growth and assimilate distribution in winter wheat 被引量:3
19
作者 Feifei Lin Cheng Li +8 位作者 Bo Xu Jian Chen Anheng Chen Muhammad A.Hassan Binbin Liu Hui Xu Xiang Chen Jianqiang Sun Jincai Li 《The Crop Journal》 SCIE CSCD 2023年第4期1272-1278,共7页
Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses o... Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses of wheat spikelets at various positions,leaves,and stems and the interactions between them at physiological levels remain unclear.In the present study,two-year treatments at terminal spikelet stage under two temperatures(2 C,-2 C) and durations(1,2,and 3 days) were imposed in an artificial climate chamber to compare the effects of LSC on grain number and yield in the wheat cultivars Yannong 19(YN19,cold-tolerant) and Xinmai 26(XM26,cold-sensitive).The night temperature regimes were designed to reproduce natural temperature variation.LSC delayed plant growth and inhibited spike and floret differentiation,leading to high yield losses in both cultivars.LSC reduced dry matter accumulation(DMA,g) in spikes,stems,and leaves,reducing the DMA ratios of the spike to leaf and spike to stem.Plant cell wall invertase(CWINV) activity increased in upper and basal spikelets in YN19,whereas CWINV increased in middle spikelets in XM26.Under LSC,soluble sugar and glucose were transported and distributed mainly in upper and basal spikelets for glume and rachis development,so that spike development was relatively complete in YN19,whereas the upper and basal spikelets were severely damaged and most of the glumes in middle spikelets were relatively completely developed in XM26,resulting in pollen abortion mainly in upper and basal spikelets.The development of glumes and rachides was influenced and grain number per spike was decreased after LSC,with kernels present mainly in middle spikelets.Overall,reduced total DMA and dry matter partitioning to spikes under LSC results in poor spikelet development,leading to high losses of grain yield. 展开更多
关键词 wheat Late spring cold Dry matter accumulation Cell wall invertase grain number Yield
下载PDF
Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions
20
作者 Shuang Cheng Zhipeng Xing +3 位作者 Chao Tian Mengzhu Liu Yuan Feng Hongcheng Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1150-1163,共14页
Biaxia lrotary tillage in dryland(DBRT)can complete biaxial rotary tillage with straw incorporation,secondary suppression,and ditching,and it has been previously studied in direct-seeded rice and wheat.However,the eff... Biaxia lrotary tillage in dryland(DBRT)can complete biaxial rotary tillage with straw incorporation,secondary suppression,and ditching,and it has been previously studied in direct-seeded rice and wheat.However,the effects of DBRT on the mechanically transplanted rice yield and greenhouse gas emissions remain unclear.To evaluate the effects of DBRT on improving the food security of mechanically transplanted rice and reducing the greenhouse gas emissions,we conducted an experiment for two years with wheat straw incorporation.Three tillage methods were set up:DBRT,uniaxial rotary tillage in dryland and paddy(DPURT),and uniaxial rotary tillage in paddy(PURT).The results showed that compared with DPURT and PURT,DBRT increased the yield of machine-transplanted rice by 7.5-11.0%and 13.3-26.7%,respectively,while the seasonal cumulative CH_(4) emissions were reduced by 13.9-21.2%and 30.2-37.0%,respectively,and the seasonal cumulative N_(2)O emissions were increased by 13.5-28.6%and 50.0-73.1%,respectively.Consequently,DBRT reduced the global warming potential by 10.7-15.5%and 23.7-28.6%,respectively,andtheyield-scaledglobalwarmingpotentialby18.2-21.8%and36.4-39.3%,respectively,compared to DPURT and PURT.These results were mainly related to the fact that DBRT significantly reduced soil bulk density and increased soil redox potential(Eh).Therefore,implementing DBRT in machine-transplanted rice fields is feasible,which cannot only increase the rice yield,but also reduce the greenhouse gas emissions. 展开更多
关键词 integrated tillage rice grain yield CH_(4) N_(2)O
下载PDF
上一页 1 2 131 下一页 到第
使用帮助 返回顶部