Background: Aerosolized amikacin (AA) is a current option for the management of ventilator-associated pneumonia (VAP) caused by multidrug-resistant Gram-negative bacteria (MDR-GNB), as it is reported that AA co...Background: Aerosolized amikacin (AA) is a current option for the management of ventilator-associated pneumonia (VAP) caused by multidrug-resistant Gram-negative bacteria (MDR-GNB), as it is reported that AA could increase the alveolar level of the drug without increasing systemic toxicity. This study aimed to evaluate the efficacy and safety of AA as an adjunctive therapy for VAP caused by MDR-GNB. Methods: In this single-center, double-blind study conducted in a 36-bed general Intensive Care Unit (ICU) in a tertiary hospital from June 2014 to June 2016, 52 ICU patients with confirmed MDR-GNB VAP were randomized to two groups (AA group, n - 27 and placebo group, n = 25). Amikacin (400 rag, q8h) or saline placebo (4 ml, q8h) was aerosolized for 7 days. The attending physician determined the administration of systemic antibiotics for VAP. Patients were tbllowed up for 28 days. Bacteriological eradication, clinical pulmonary infection score (CP1S), and serum creatinine were assessed on day 7 of therapy. New resistance to amikacin, cure rate of VAP, weaning rate, and mortality were assessed on day 28. Results: The baseline characteristics of patients in both groups were similar. At the end of the treatment, 13 of the 32 initially detected bacterial isolates were eradicated in AA group, compared to 4 of 28 in placebo group (41% vs. 14%, P - 0.024). As for patients, 11 of 27 patients treated with AA and 4 of 25 patients treated with placebo have eradication (41% vs. 16%, P = 0.049). The adjunction of AA reduced CPIS (4.2 ± 1.6 vs. 5.8 ± 2.1, P = 0.007). New drug resistance to amikacin and the change in serum creatinine were not detected in AA group. No significant differences in the clinical cure rate in survivors (48% vs. 35%, P = 0.444), weaning rate (48% vs. 32%, P = 0.236), and mortality (22% vs. 32%, P = 0.427) were detected between the two groups on day 28. Conclusions: As an adjunctive therapy of MDR-GNB VAP, AA successfully eradicated existing MDR organisms without inducing new resistance to amikacin or change in serum creatinine. However, the improvement of mortality was not found.展开更多
A series of new monobactam sulfonates is continuously synthesized and evaluated for their antimicrobial efficacies against Gram-negative bacteria.Compound 33a(IMBZ18G)is highly effective in vitro and in vivo against c...A series of new monobactam sulfonates is continuously synthesized and evaluated for their antimicrobial efficacies against Gram-negative bacteria.Compound 33a(IMBZ18G)is highly effective in vitro and in vivo against clinically intractable multi-drug-resistant(MDR)Gram-negative strains,with a highly druglike nature.The checkerboard assay reveals its significant synergistic effect withβ-lactamase inhibitor avibactam,and the MIC values against MDR enterobacteria were reduced up to 4—512folds.X-ray co-crystal and chemoproteomic assays indicate that the anti-MDR bacteria effect of 33a results from the dual inhibition of the common PBP3 and some class A and Cβ-lactamases.Accordingly,preclinical studies of 33a alone and 33a-avibactam combination as potential innovative candidates are actively going on,in the treatment ofβ-lactamase-producing MDR Gram-negative bacterial infections.展开更多
Infectious diseases become one of the leading causes of human death. Traditional treatment based on classical antibiotics could not provide enough antibacterial activity to combat bacterial infections due to low bioav...Infectious diseases become one of the leading causes of human death. Traditional treatment based on classical antibiotics could not provide enough antibacterial activity to combat bacterial infections due to low bioavailability, even leading to antibiotic resistance. In recent years, biomimetic delivery systems have been developed to improve drug therapy for various diseases, such as malignant tumor and cardiovascular disease. In this work, we designed virus-inspired nanodrugs(VNDs) through co-assembly of amphiphilic lipopeptide dendrons and poly(lactic-co-glycolic acid) polymers for high-efficiency antibiotic delivery. These VNDs had well-defined and stable nanostructures for tetracycline encapsulation and delivery. The VNDs were capable of promoting antibiotic internalization and enhancing their antibacterial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Additionally, no obvious cytotoxicity of VNDs was observed to human cell lines. This work successfully demonstrated the virus-mimetic nanoparticles served as promising and applicable antibiotic delivery platform for antibacterial treatment.展开更多
文摘Background: Aerosolized amikacin (AA) is a current option for the management of ventilator-associated pneumonia (VAP) caused by multidrug-resistant Gram-negative bacteria (MDR-GNB), as it is reported that AA could increase the alveolar level of the drug without increasing systemic toxicity. This study aimed to evaluate the efficacy and safety of AA as an adjunctive therapy for VAP caused by MDR-GNB. Methods: In this single-center, double-blind study conducted in a 36-bed general Intensive Care Unit (ICU) in a tertiary hospital from June 2014 to June 2016, 52 ICU patients with confirmed MDR-GNB VAP were randomized to two groups (AA group, n - 27 and placebo group, n = 25). Amikacin (400 rag, q8h) or saline placebo (4 ml, q8h) was aerosolized for 7 days. The attending physician determined the administration of systemic antibiotics for VAP. Patients were tbllowed up for 28 days. Bacteriological eradication, clinical pulmonary infection score (CP1S), and serum creatinine were assessed on day 7 of therapy. New resistance to amikacin, cure rate of VAP, weaning rate, and mortality were assessed on day 28. Results: The baseline characteristics of patients in both groups were similar. At the end of the treatment, 13 of the 32 initially detected bacterial isolates were eradicated in AA group, compared to 4 of 28 in placebo group (41% vs. 14%, P - 0.024). As for patients, 11 of 27 patients treated with AA and 4 of 25 patients treated with placebo have eradication (41% vs. 16%, P = 0.049). The adjunction of AA reduced CPIS (4.2 ± 1.6 vs. 5.8 ± 2.1, P = 0.007). New drug resistance to amikacin and the change in serum creatinine were not detected in AA group. No significant differences in the clinical cure rate in survivors (48% vs. 35%, P = 0.444), weaning rate (48% vs. 32%, P = 0.236), and mortality (22% vs. 32%, P = 0.427) were detected between the two groups on day 28. Conclusions: As an adjunctive therapy of MDR-GNB VAP, AA successfully eradicated existing MDR organisms without inducing new resistance to amikacin or change in serum creatinine. However, the improvement of mortality was not found.
基金supported by CAMS Innovation Fund for Medical Sciences(2021-12M-1-070)National Natural Science Foundation of China(32141003)。
文摘A series of new monobactam sulfonates is continuously synthesized and evaluated for their antimicrobial efficacies against Gram-negative bacteria.Compound 33a(IMBZ18G)is highly effective in vitro and in vivo against clinically intractable multi-drug-resistant(MDR)Gram-negative strains,with a highly druglike nature.The checkerboard assay reveals its significant synergistic effect withβ-lactamase inhibitor avibactam,and the MIC values against MDR enterobacteria were reduced up to 4—512folds.X-ray co-crystal and chemoproteomic assays indicate that the anti-MDR bacteria effect of 33a results from the dual inhibition of the common PBP3 and some class A and Cβ-lactamases.Accordingly,preclinical studies of 33a alone and 33a-avibactam combination as potential innovative candidates are actively going on,in the treatment ofβ-lactamase-producing MDR Gram-negative bacterial infections.
基金supported by National Natural Science Foundation of China (NSFC, Nos. 91956105, 22077028 and 32000995)China National Postdoctoral Program for Innovative Talents(No. BX20200124)+2 种基金China Postdoctoral Science Foundation (No.2020M682544)the Fundamental Research Funds for the Central University (No. 531118010440)Major Research Projects (No.531118100003) from Hunan University。
文摘Infectious diseases become one of the leading causes of human death. Traditional treatment based on classical antibiotics could not provide enough antibacterial activity to combat bacterial infections due to low bioavailability, even leading to antibiotic resistance. In recent years, biomimetic delivery systems have been developed to improve drug therapy for various diseases, such as malignant tumor and cardiovascular disease. In this work, we designed virus-inspired nanodrugs(VNDs) through co-assembly of amphiphilic lipopeptide dendrons and poly(lactic-co-glycolic acid) polymers for high-efficiency antibiotic delivery. These VNDs had well-defined and stable nanostructures for tetracycline encapsulation and delivery. The VNDs were capable of promoting antibiotic internalization and enhancing their antibacterial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Additionally, no obvious cytotoxicity of VNDs was observed to human cell lines. This work successfully demonstrated the virus-mimetic nanoparticles served as promising and applicable antibiotic delivery platform for antibacterial treatment.