Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled ...Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled system.At last,a Gram-type Pfaffian solution to the new coupled system is given.展开更多
A differential-difference Davey-Stewartson system with self-consistent sources is constructed using the source generation procedure. We observe how the resulting coupled discrete system reduces to the identities for d...A differential-difference Davey-Stewartson system with self-consistent sources is constructed using the source generation procedure. We observe how the resulting coupled discrete system reduces to the identities for determinant by presenting the Gram-type determinant solution and Casorati-type determinant solution.展开更多
The dynamic magnetic behavior of the kinetic metamagnetic spin-5/2 Blume-Capel model is examined, within a mean-field approach, under a time-dependent oscillating magnetic field. To describe the kinetics of the system...The dynamic magnetic behavior of the kinetic metamagnetic spin-5/2 Blume-Capel model is examined, within a mean-field approach, under a time-dependent oscillating magnetic field. To describe the kinetics of the system, Glauber- type stochastic dynamics has been utilized. The mean-field dynamic equations of the model are obtained from the Master equation. Firstly, these dynamic equations are solved to find the phases in the system. Then, the dynamic phase transition temperatures are obtained by investigating the thermal behavior of dynamic sublattice magnetizations. Moreover, from this investigation, the nature of the phase transitions (first- or second-order) is characterized. Finally, the dynamic phase diagrams are plotted in five different planes. It is found that the dynamic phase diagrams contain the paramagnetic (P), antiferromagnetic (AF5/2, AF3/2, AF1/2) phases and five different mixed phases. The phase diagrams also display many dynamic critical points, such as tricritical point, triple point, quadruple point, double critical end point and separating point.展开更多
文摘Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled system.At last,a Gram-type Pfaffian solution to the new coupled system is given.
文摘A differential-difference Davey-Stewartson system with self-consistent sources is constructed using the source generation procedure. We observe how the resulting coupled discrete system reduces to the identities for determinant by presenting the Gram-type determinant solution and Casorati-type determinant solution.
文摘The dynamic magnetic behavior of the kinetic metamagnetic spin-5/2 Blume-Capel model is examined, within a mean-field approach, under a time-dependent oscillating magnetic field. To describe the kinetics of the system, Glauber- type stochastic dynamics has been utilized. The mean-field dynamic equations of the model are obtained from the Master equation. Firstly, these dynamic equations are solved to find the phases in the system. Then, the dynamic phase transition temperatures are obtained by investigating the thermal behavior of dynamic sublattice magnetizations. Moreover, from this investigation, the nature of the phase transitions (first- or second-order) is characterized. Finally, the dynamic phase diagrams are plotted in five different planes. It is found that the dynamic phase diagrams contain the paramagnetic (P), antiferromagnetic (AF5/2, AF3/2, AF1/2) phases and five different mixed phases. The phase diagrams also display many dynamic critical points, such as tricritical point, triple point, quadruple point, double critical end point and separating point.