期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Fault diagnosis of a marine power-generation diesel engine based on the Gramian angular field and a convolutional neural network
1
作者 Congyue LI Yihuai HU +1 位作者 Jiawei JIANG Dexin CUI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第6期470-482,共13页
Marine power-generation diesel engines operate in harsh environments.Their vibration signals are highly complex and the feature information exhibits a non-linear distribution.It is difficult to extract effective featu... Marine power-generation diesel engines operate in harsh environments.Their vibration signals are highly complex and the feature information exhibits a non-linear distribution.It is difficult to extract effective feature information from the network model,resulting in low fault-diagnosis accuracy.To address this problem,we propose a fault-diagnosis method that combines the Gramian angular field(GAF)with a convolutional neural network(CNN).Firstly,the vibration signals are transformed into 2D images by taking advantage of the GAF,which preserves the temporal correlation.The raw signals can be mapped to 2D image features such as texture and color.To integrate the feature information,the images of the Gramian angular summation field(GASF)and Gramian angular difference field(GADF)are fused by the weighted average fusion method.Secondly,the channel attention mechanism and temporal attention mechanism are introduced in the CNN model to optimize the CNN learning mechanism.Introducing the concept of residuals in the attention mechanism improves the feasibility of optimization.Finally,the weighted average fused images are fed into the CNN for feature extraction and fault diagnosis.The validity of the proposed method is verified by experiments with abnormal valve clearance.The average diagnostic accuracy is 98.40%.When−20 dB≤signal-to-noise ratio(SNR)≤20 dB,the diagnostic accuracy of the proposed method is higher than 94.00%.The proposed method has superior diagnostic performance.Moreover,it has a certain anti-noise capability and variable-load adaptive capability. 展开更多
关键词 Multi-attention mechanisms(MAM) Convolutional neural network(CNN) gramian angular field(GAF) Image fusion Marine power-generation diesel engine Fault diagnosis
原文传递
基于格拉姆角场与深度卷积生成对抗网络的行星齿轮箱故障诊断 被引量:2
2
作者 古莹奎 石昌武 陈家芳 《噪声与振动控制》 CSCD 北大核心 2024年第1期111-118,共8页
针对行星齿轮箱故障诊断中样本分布不均衡所引起的模型泛化能力差及诊断精度低等问题,采用格拉姆角场图像编码技术和深度卷积生成对抗网络相结合进行数据增强,融合AlexNet卷积神经网络进行故障诊断。将采集到的一维振动信号转化为格拉... 针对行星齿轮箱故障诊断中样本分布不均衡所引起的模型泛化能力差及诊断精度低等问题,采用格拉姆角场图像编码技术和深度卷积生成对抗网络相结合进行数据增强,融合AlexNet卷积神经网络进行故障诊断。将采集到的一维振动信号转化为格拉姆角场图,按比例划分训练集与测试集,将训练集样本与随机向量输入到深度卷积生成对抗网络模型中,交替训练生成器与判别器,达到纳什平衡,生成与原始样本类似的生成样本,从而实现故障样本的增广。用原始样本与生成的增广样本训练卷积神经网络分类模型,完成行星齿轮箱的故障识别。实验结果表明,所提方法能够有效提升样本不均衡条件下的行星齿轮箱故障诊断精度,使之达到99.15%,且能使收敛速度更快。 展开更多
关键词 故障诊断 格拉姆角场 深度卷积生成对抗网络 卷积神经网络 行星齿轮箱
下载PDF
时序数据图像化:战术意图识别及可移植框架
3
作者 宋亚飞 李乐民 +2 位作者 权文 倪鹏 王科 《通信学报》 EI CSCD 北大核心 2024年第8期149-165,共17页
通过将时序编码为图像,提出了一种结合曲线滤波技术和EfficientNetV2图像识别网络的鲁棒且可移植的战术意图识别框架。曲线滤波技术可以有效地减少大量时域特征、模型参数和训练时间的冗余,基于此,提出了一种改进的格拉姆角场方法将时... 通过将时序编码为图像,提出了一种结合曲线滤波技术和EfficientNetV2图像识别网络的鲁棒且可移植的战术意图识别框架。曲线滤波技术可以有效地减少大量时域特征、模型参数和训练时间的冗余,基于此,提出了一种改进的格拉姆角场方法将时序编码为图像,提高了卷积神经网络的特征提取能力。EfficientNetV2网络能够有效地处理意图图像,并成为预训练模型,使得在不同系统之间进行迁移学习成为可能。实验结果表明,所提框架相对于机器学习及深度学习等方法提高了0.99%以上的准确率,具有更好的性能、可扩展性、鲁棒性和可迁移性。 展开更多
关键词 时序编码 意图识别 图像分类 曲线滤波 格拉姆角场 EfficientNetV2
下载PDF
基于改进GAF-SE-ResNet的光伏逆变器开路故障诊断
4
作者 韩素敏 余悦伟 郭宇 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期336-344,共9页
针对光伏逆变器一维时序信号输入卷积神经网络时无法充分捕获时间和局部特征的问题,提出一种基于格拉姆角场(GAF)与改进的深度残差网络(ResNet)结合的光伏逆变器开路故障诊断模型。采用双通道GAF编码方法将一维电流信号映射为不同像素... 针对光伏逆变器一维时序信号输入卷积神经网络时无法充分捕获时间和局部特征的问题,提出一种基于格拉姆角场(GAF)与改进的深度残差网络(ResNet)结合的光伏逆变器开路故障诊断模型。采用双通道GAF编码方法将一维电流信号映射为不同像素分布的二维故障特征图像,将特征图像作为ResNet的输入,保留了数据在时间维度的相关性。ResNet在卷积神经网络中引入残差模块来解决过拟合的问题,加入压缩和激励(SE)注意力机制改进残差模块后进行图像压缩、特征重用,增强了重要特征信息,使ResNet能更深入挖掘图像信息,充分捕获局部特征,结合Swish函数和Ranger优化器优化ResNet,大幅降低模型训练难度。实验结果表明,该方法对光伏逆变器开路故障诊断准确率达99.41%,与其他模型相比,具有更好的特征提取效果和诊断速度。 展开更多
关键词 光伏逆变器 故障诊断 特征提取 格拉姆角场 残差网络
下载PDF
基于GAF-MCNN的轴承智能故障诊断方法研究
5
作者 张超 房颖涛 +3 位作者 冯建睿 杨柯 何世烈 董志杰 《国外电子测量技术》 2024年第9期161-172,共12页
针对轴承微小故障信号非平稳非线性且易受背景噪声干扰的特点,提出了一种基于格拉姆角场和多尺度卷积神经网络(Gramian angular field and multi-scale convolutional neural network,GAF-MCNN)的智能故障诊断方法。首先,利用分段聚合... 针对轴承微小故障信号非平稳非线性且易受背景噪声干扰的特点,提出了一种基于格拉姆角场和多尺度卷积神经网络(Gramian angular field and multi-scale convolutional neural network,GAF-MCNN)的智能故障诊断方法。首先,利用分段聚合近似算法对原始振动信号进行压缩降维预处理,以减少数据存储空间和提升计算效率;然后,利用格拉姆角场算法将一维序列信号转换为二维矩阵热图,二维化后的矩阵加强了原始振动信号间的时间关系,将时间维度编码到了矩阵结构中;最后,设计了基于多尺度卷积神经网络对故障进行高效快速智能诊断。实验结果表明,GAF-MCNN诊断方法不仅克服了传统卷积神经网络诊断方法存在的计算效率较低的问题,而且诊断准确率优于单尺度卷积神经网络方法,具有较强的工程实用性。 展开更多
关键词 分段聚合近似 格拉姆角场 卷积神经网络 故障诊断
下载PDF
基于SO-PAA-GAF和AdaBoost集成学习的高压断路器故障诊断 被引量:6
6
作者 司江宽 吐松江·卡日 +2 位作者 范想 高文胜 朱炜 《电力系统保护与控制》 EI CSCD 北大核心 2024年第3期152-160,共9页
针对在小样本和复杂工况下高压断路器故障诊断识别精度不高的问题,提出一种基于振动信号处理和Ada Boost集成学习的高压断路器故障诊断方法。首先,搭建高压断路器实验平台并采集8种工况下的分闸振动信号。其次,对振动信号进行绝对值处理... 针对在小样本和复杂工况下高压断路器故障诊断识别精度不高的问题,提出一种基于振动信号处理和Ada Boost集成学习的高压断路器故障诊断方法。首先,搭建高压断路器实验平台并采集8种工况下的分闸振动信号。其次,对振动信号进行绝对值处理后,使用分段聚合近似(piecewise aggregate approximation,PAA)进行分段平均,将输出的新序列采用格拉姆角场(Gramian angular field,GAF)转换成图片,并使用Relief F方法对提取的高维图片特征进行重要度排序。最后,将保留的重要特征输入到Ada Boost集成学习模型进行故障诊断,并用蛇优化算法确定最优PAA分段步长和输入分类器特征数量,以进一步提高故障诊断精度。通过分析多种信号处理方式及分类模型可知,图片信号和Ada Boost集成学习模型能够有效处理振动信号并准确判断故障类型,为准确、可靠地诊断高压断路器故障提供了新途径。 展开更多
关键词 高压断路器 振动信号处理 分段聚合近似 格拉姆角场 故障诊断
下载PDF
基于格拉姆角场和深度残差网络的变压器绕组松动故障诊断模型 被引量:1
7
作者 肖雨松 马宏忠 《电机与控制应用》 2024年第1期29-38,共10页
针对变压器绕组松动故障诊断中特征量难以选取,依赖人工经验的问题,提出了一种基于自动编码器降噪,格拉姆角场(GAF)和深度残差网络(ResNet)进行识别的变压器绕组松动诊断方法。该方法直接从GAF图像中自动学习有效的故障特征,不需要手动... 针对变压器绕组松动故障诊断中特征量难以选取,依赖人工经验的问题,提出了一种基于自动编码器降噪,格拉姆角场(GAF)和深度残差网络(ResNet)进行识别的变压器绕组松动诊断方法。该方法直接从GAF图像中自动学习有效的故障特征,不需要手动提取特征量。首先,将振动信号经过自动编码器进行降噪,获得信噪比更高的振动信号。然后,采用GAF方法将振动信号转化为二维图像,生成图像数据集,在此基础上训练ResNet,构建适用于变压器绕组松动故障分类识别的网络模型。最后,搭建变压器绕组松动故障试验平台,采集绕组在不同松动和试验电流下的振动信号并进行分析。试验结果表明,所提诊断方法对变压器绕组松动识别准确率达95%以上,能够有效识别松动相和松动程度,适用于变压器绕组松动故障的识别和诊断。 展开更多
关键词 变压器振动 绕组松动 降噪自动编码器 格拉姆角场(GAF) 深度残差网络
下载PDF
结合GAF与CNN的操动机构弹簧储能状态智能辨识
8
作者 施贻铸 满天雪 +3 位作者 周余庆 任燕 沈志煌 孙维方 《重庆大学学报》 CAS CSCD 北大核心 2024年第9期30-38,共9页
操动机构弹簧储能状态的鲁棒辨识对断路器服役性能有重要影响,如何建立起采样信号与弹簧储能状态之间的映射关系是制约其广泛应用的关键。针对这一问题,结合格拉姆角场(Gramian angular field,GAF)与卷积神经网络(convolutional neural ... 操动机构弹簧储能状态的鲁棒辨识对断路器服役性能有重要影响,如何建立起采样信号与弹簧储能状态之间的映射关系是制约其广泛应用的关键。针对这一问题,结合格拉姆角场(Gramian angular field,GAF)与卷积神经网络(convolutional neural network,CNN),提出了一种弹簧储能状态智能辨识方法,并成功应用于断路器操动机构。采用格拉姆角场将采集到的时域信号进行二维化处理,并利用其进行操动机构动态特性演化过程的追踪。断路器操动机构状态辨识实验验证了所提出的智能诊断方法有效性(识别成功率接近100.00%),为断路器在役状态的鲁棒识别提供一种可能。 展开更多
关键词 断路器 卷积神经网络 弹簧储能状态 格拉姆角场
下载PDF
基于格拉姆角场与ResNet的输电线路故障辨识方法
9
作者 赵启 王建 +3 位作者 林丰恺 陈军 南东亮 欧阳金鑫 《电力系统保护与控制》 EI CSCD 北大核心 2024年第10期95-104,共10页
针对如何利用实际故障录波数据,提取和放大故障特征差异,开展故障类型与故障原因辨识的问题,提出了基于格拉姆角场与迁移学习-ResNet的输电线路故障辨识方法。首先,统计分析了输电线路故障类型和故障原因的分布特征,用于指导构建适用于... 针对如何利用实际故障录波数据,提取和放大故障特征差异,开展故障类型与故障原因辨识的问题,提出了基于格拉姆角场与迁移学习-ResNet的输电线路故障辨识方法。首先,统计分析了输电线路故障类型和故障原因的分布特征,用于指导构建适用于类不平衡问题的故障分类器。然后,利用格拉姆角场变换将采集得到的故障电压、电流时序信号转化为格拉姆角场图像,放大故障特征差异,作为故障分类器的输入。进一步,将生成的图像集输入搭建好的故障分类器进行网络训练和测试,输出输电线路故障类型和故障原因。最后,完全采用真实故障录波数据开展了算例分析。结果表明:所提方法对故障类型的辨识准确率达到了97.51%,对故障原因的辨识准确率达到了94.23%。并且将训练的故障辨识网络迁移至其他地区时,仍然具有较好的故障辨识效果和泛化性能。所提方法为基于暂态波形数据驱动的故障辨识提供了新方法,可以用于实际电网的输电线路故障辨识。 展开更多
关键词 输电线路 故障辨识 格拉姆角场 残差神经网络 迁移学习
下载PDF
基于改进EfficientNet模型的轻量化滚动轴承故障诊断方法
10
作者 戴莹钰 李靖超 +3 位作者 赵莹 刘艳丽 王申华 张斌 《制造技术与机床》 北大核心 2024年第9期9-15,共7页
相比依赖于人工分析且无法充分提取信号中丰富信息的传统故障诊断方法,采用深度学习模型可以取得更理想的识别效果,但依然存在所使用的模型参数量大、计算成本高的问题。文章提出一种将格拉姆角场(gramian angular field,GAF)编码方式... 相比依赖于人工分析且无法充分提取信号中丰富信息的传统故障诊断方法,采用深度学习模型可以取得更理想的识别效果,但依然存在所使用的模型参数量大、计算成本高的问题。文章提出一种将格拉姆角场(gramian angular field,GAF)编码方式与改进的EfficientNet-B0模型相结合的方法进行轴承的故障诊断。首先,一维轴承信号经过格拉姆角场编码为二维时序图像;其次,将二维图像输入引入注意力机制CBAM模块的EfficientNet-B0模型中自动进行特征提取和分类识别;最后,在仿真试验环节使用凯斯西储大学与德国帕德博恩大学的轴承数据集,基于格拉姆角场与EfficientNet-B0-CBAM模型的诊断方法对轴承故障的识别准确率分别可达到99.90%和98.04%,可以得出所提出的方法在保持模型轻量化特点的基础上拥有更高的识别准确率和更好的泛化能力。 展开更多
关键词 智能故障诊断 格拉姆角场 轻量化卷积神经网络 EfficientNet-B0 注意力机制 CBAM
下载PDF
基于GAF-CNN的n/γ甄别方法研究 被引量:2
11
作者 黄坤翔 张江梅 +1 位作者 王嘉麒 苏覃 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第2期461-470,共10页
中子探测是核能开发领域的重要技术,由于中子闪烁体探测器往往会对中子和γ射线同时响应,因此有效分辨中子和γ射线是实现高精度中子探测的先决条件。为进一步提升n/γ甄别性能,本文结合脉冲形状甄别(PSD)技术和格拉姆角场(GAF)图像转... 中子探测是核能开发领域的重要技术,由于中子闪烁体探测器往往会对中子和γ射线同时响应,因此有效分辨中子和γ射线是实现高精度中子探测的先决条件。为进一步提升n/γ甄别性能,本文结合脉冲形状甄别(PSD)技术和格拉姆角场(GAF)图像转换方法,将卷积神经网络(CNN)分类模型应用到n/γ甄别中。通过GAF将n/γ脉冲数据转化为二维图像,之后将其输入到CNN分类模型中达到样本辨别的目的。为验证GAF-CNN甄别的准确性,与传统CNN甄别法和电荷比较法进行了甄别效果对比。结果表明,GAF-CNN甄别法具有更低的辨别误差率和较短的处理时间,且n/γ甄别品质因子(FOM)有着数量级上的提升。同时其具备网络轻量化的特点,有助于实现CNN PSD算法的嵌入式部署,为研制高性能n/γ复合探测能谱仪提供了一种可行的PSD技术解决方案。 展开更多
关键词 n/γ甄别 脉冲形状甄别 格拉姆角场 卷积神经网络 电荷比较法
下载PDF
基于GADF-MDSC的特大型轴承深度迁移故障诊断方法
12
作者 姜烨飞 王华 +2 位作者 潘裕斌 王天祥 傅航 《振动与冲击》 EI CSCD 北大核心 2024年第19期10-18,共9页
针对工程应用中特大型轴承运行工况复杂以及故障数据匮乏,导致其故障特征提取不全面的问题,提出了一种基于格拉姆角差场-多尺度深度可分离卷积(Gramian angular difference field-multi-scale depthwise separable convolutions,GADF-MD... 针对工程应用中特大型轴承运行工况复杂以及故障数据匮乏,导致其故障特征提取不全面的问题,提出了一种基于格拉姆角差场-多尺度深度可分离卷积(Gramian angular difference field-multi-scale depthwise separable convolutions,GADF-MDSC)的特大型轴承深度迁移智能诊断方法。首先,构建GADF-MDSC故障诊断网络,该网络分为三大模块:图像转换、特征提取、输出部分。图像转换模块采用GADF编码方式将振动信号转换为二维图像;特征提取模块通过MDSC提取综合故障特征信息,并利用双向门控循环单元筛选融合特征;输出部分由Softmax函数预测轴承故障类型的概率分布。然后,利用源域数据预训练模型,将预训练模型权重参数作为目标域训练模型初始化参数,冻结除底层外的所有参数,使用目标域数据微调模型,实现深度迁移故障诊断任务。最后,通过两种特大型轴承试验对深度迁移模型进行验证。试验结果表明,所提方法在目标域样本仅有5.00%的条件下,仍能保证较高的跨工况精度,达到86.04%,且迁移效果优于其他方法。 展开更多
关键词 特大型轴承 故障诊断 迁移学习 格拉姆角差场(GADF) 多尺度深度可分离卷积(MDSC)
下载PDF
基于CNN与Transformer相融合的心跳分类算法
13
作者 刘子杰 杨晨 《通信技术》 2024年第6期556-562,共7页
心电图(Electrocardiogram,ECG)对于心血管疾病的诊断有着重要的作用,精确的心跳分类有助于后续的疾病治疗。但原始的心电图信号存在的大量噪声会影响计算机的判断,而去噪可能会导致信号特征丢失。为此,提出了利用格拉姆角场(Gramian An... 心电图(Electrocardiogram,ECG)对于心血管疾病的诊断有着重要的作用,精确的心跳分类有助于后续的疾病治疗。但原始的心电图信号存在的大量噪声会影响计算机的判断,而去噪可能会导致信号特征丢失。为此,提出了利用格拉姆角场(Gramian Angular Field,GAF)将一维信号转化为图像,以保证信息完整性,然后利用计算机视觉处理技术分析心跳信号。此外,针对视觉Transformer(Vision Transformer,ViT)在局部特征捕获能力受限的问题,提出了在ViT模型内部和外部引入带残差连接的卷积神经网络(Convolutional Neural Network,CNN),使整体网络能够同时关注图像的局部特征和全局特征。同时,通过将ViT中单一的自注意块改进为双支路通道空间注意力结构,提升了模型的整体分类性能。实验结果表明,所提出的方法有效提高了网络的性能。 展开更多
关键词 心跳分类 TRANSFORMER 卷积神经网络 格拉姆角场
下载PDF
基于格拉姆角场与并行CNN的并网逆变器开关管健康诊断
14
作者 李宗源 陈谦 +2 位作者 钱倍奇 牛应灏 张政伟 《电力自动化设备》 EI CSCD 北大核心 2024年第8期153-159,共7页
针对并网逆变器开关管实际运行中易出现缺陷状态而导致电压/电流波形异常的问题,提出了一种基于格拉姆角场与并行卷积神经网络(CNN)相结合的逆变器开关管健康诊断方法,以实现对逆变器进行监测及预测性诊断。采集逆变器输出端电压与电流... 针对并网逆变器开关管实际运行中易出现缺陷状态而导致电压/电流波形异常的问题,提出了一种基于格拉姆角场与并行卷积神经网络(CNN)相结合的逆变器开关管健康诊断方法,以实现对逆变器进行监测及预测性诊断。采集逆变器输出端电压与电流信号,设定并计算虚拟电阻参数再将其转化为一维时序序列;利用格拉姆角场对其进行变换,提取出与逆变器开关管缺陷相关的格拉姆角和场与格拉姆角差场2组图像数据;将生成的2组图像同时送入CNN进行并行学习训练。实验结果表明所提方法及训练模型能及时有效地对逆变器异常状态进行诊断,且诊断准确率高,鲁棒性好。 展开更多
关键词 并网逆变器 健康诊断 开关管缺陷 格拉姆角场 并行CNN
下载PDF
基于图像融合和双通道卷积神经网络的配电网故障选线方法研究
15
作者 苏斌 侯思祖 郭威 《电子测量与仪器学报》 CSCD 北大核心 2024年第9期54-66,共13页
针对传统的配电网故障选线方法受限于单一的故障诊断模型,提出一种基于图像融合和双通道卷积神经网络的配电网故障选线方法。研究目的是解决现有方法在面对高阻接地、噪声干扰、分布式电源接地、采样时间不同步等复杂工况时的准确性问... 针对传统的配电网故障选线方法受限于单一的故障诊断模型,提出一种基于图像融合和双通道卷积神经网络的配电网故障选线方法。研究目的是解决现有方法在面对高阻接地、噪声干扰、分布式电源接地、采样时间不同步等复杂工况时的准确性问题。首先,利用格拉姆角和场和格拉姆角差场将零序电流信号转成易于区分故障的二维图像,为图像处理提供了基础。其次,通过图像融合技术将GASF图像和GADF图像进行空间域图像融合,得到一张综合特征图像,充分利用了不同图像的特征,提高了特征表达的丰富性和有效性。接着,构建双通道卷积神经网络模型,其中一维卷积神经网络和ResNet50网络分别用于挖掘零序电流信号和格拉姆角场图像的特征。这种设计充分发挥了不同卷积神经网络在处理一维信号和二维图像时的优势。最后,将融合后的特征输入到Sigmoid函数实现故障线路的筛选。实验结果表明,该方法在各种复杂工况下的表现均优于传统方法,其准确率、Kappa系数、马修斯相关系数、召回率分别达到了99.97%、0.9993、0.9993、0.9995。这些结果表明,该方法不仅具有较高的准确性,还具有良好的鲁棒性和稳定性,能够有效应对高阻接地、噪声干扰、分布式电源接地和采样时间不同步等实际应用中的挑战。提出的方法为配电网故障选线提供了一种新颖且高效的解决方案,具有重要的实际应用价值和广泛的推广前景。 展开更多
关键词 格拉姆角场 故障选线 图像融合 双通道卷积神经网络
下载PDF
基于改进的GAF算法的EEG情感识别
16
作者 王星星 邵杰 +2 位作者 陈鑫 杨世逸林 杨鑫 《计算机技术与发展》 2024年第5期109-116,共8页
利用脑电图(EEG)信号对人类的情感进行识别一直是一个重要且具有挑战性的研究领域。传统的方法都是对一维EEG信号进行分析,然后提取特征进行识别;但这种方法需要提取许多时域或频域上的特征才能取得较好的识别效果。考虑到二维图像蕴含... 利用脑电图(EEG)信号对人类的情感进行识别一直是一个重要且具有挑战性的研究领域。传统的方法都是对一维EEG信号进行分析,然后提取特征进行识别;但这种方法需要提取许多时域或频域上的特征才能取得较好的识别效果。考虑到二维图像蕴含的信息要远远比一维信号蕴含的信息丰富,因此将一维信号转换成二维图像可以提取更加有效的特征进行识别。为此,该文提出了一种基于改进的Gramian Angular Field(GAF)算法的EEG情感识别方法。首先,从EEG信号中提取alpha、beta、gama三个频段的子带信号;然后,提出了一种基于马氏距离加权的改进GAF算法将一维EEG信号转换成二维特征图像;接着,从二维图像中提取奇异值熵、图能量等特征;最后,利用卷积神经网络(CNN)对提取的EEG特征进行分类识别。基于广泛使用的DEAP数据集,针对四分类(HAHV、LAHV、LALV和HALV)情感识别任务,对该模型进行了验证。实验结果表明:所提算法的平均分类准确率达到92.63%,与现有的识别方法对比具有一定的优势。 展开更多
关键词 脑电图 情感识别 格拉姆角场 马氏距离 卷积神经网络
下载PDF
基于格拉姆角差场和生成对抗网络的小样本滚动轴承故障诊断方法
17
作者 强睿儒 赵小强 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第10期64-75,共12页
针对基于深度学习的滚动轴承故障诊断算法需要从大量标注数据中学习,且面对样本数量受限时诊断效果不佳的问题,文中提出了一种基于格拉姆角差场(GADF)和生成对抗网络(GAN)的小样本滚动轴承故障诊断方法。首先,提出了基于GADF变换的数据... 针对基于深度学习的滚动轴承故障诊断算法需要从大量标注数据中学习,且面对样本数量受限时诊断效果不佳的问题,文中提出了一种基于格拉姆角差场(GADF)和生成对抗网络(GAN)的小样本滚动轴承故障诊断方法。首先,提出了基于GADF变换的数据增强方式,将少数1维振动信号通过GADF变换转换为2维GADF图像,并通过裁剪得到GADF子图,从而得到大量的图像样本;然后,将条件生成对抗网络(CGAN)与带有梯度惩罚的Wasserstein GAN(WGAN-GP)相结合,构建一种新的生成对抗网络,该网络通过条件辅助信息与梯度惩罚增强模型训练稳定性,并设计动态坐标注意力机制以增强模型的空间感知能力,从而生成高质量样本;最后,使用生成的样本对分类器进行训练,并在验证集上得到诊断结果。文中分别使用东南大学数据集和美国凯斯西储大学(CWRU)数据集进行了两组小样本环境下的轴承故障诊断实验。结果表明,与传统生成对抗网络以及先进的小样本故障诊断方法相比,文中所提方法的准确率和精确率等5项故障诊断指标均获得最好的结果,可以准确诊断出小样本条件下的轴承故障类型。 展开更多
关键词 小样本轴承故障诊断 格拉姆角差场 生成对抗网络 注意力机制
下载PDF
基于二维卷积的连续血压预测系统
18
作者 崔守毅 杨国伟 +4 位作者 何羽恒 管静萱 胡远凝 廖丹丹 荆凯 《集成电路与嵌入式系统》 2024年第8期1-6,共6页
针对生命体征信号数字化采集和连续血压预测等需求,设计并实现了一种基于二维卷积的连续血压预测系统。在系统硬件部分使用ESP32模组、AD8232模块和PulseSensor传感器,采集获得的人体心电图(ECG)和光电容积脉搏波(PPG)信号数据并通过MQT... 针对生命体征信号数字化采集和连续血压预测等需求,设计并实现了一种基于二维卷积的连续血压预测系统。在系统硬件部分使用ESP32模组、AD8232模块和PulseSensor传感器,采集获得的人体心电图(ECG)和光电容积脉搏波(PPG)信号数据并通过MQTT协议传输至服务端处理。本文算法部分使用格拉米角差场(GADF)、二维卷积和模型剪枝技术,设计并训练了使用ECG和PPG信号预测人体连续血压的神经网络模型,并分别在开源数据集和自制数据集中测试了连续血压预测模型的性能。本文系统为重要体征信号采集和连续血压预测提供了一个有效的参考方案。 展开更多
关键词 体征信号采集 连续血压预测 格拉米角场 二维卷积 模型剪枝
下载PDF
基于凌日搜索优化CNN/BI-GRU的电能质量扰动分类方法
19
作者 高帅 杨永超 +1 位作者 童占北 钟建伟 《湖北民族大学学报(自然科学版)》 CAS 2024年第3期361-367,共7页
针对复杂电能质量扰动分类方法识别准确率不高的问题,提出了一种基于凌日搜索优化多模态网络模型的电能质量扰动分类方法。首先,利用格拉姆角场对初始一维时序信号进行数据处理得到二维图像数据;然后,分别将时序信号与图像数据输入多模... 针对复杂电能质量扰动分类方法识别准确率不高的问题,提出了一种基于凌日搜索优化多模态网络模型的电能质量扰动分类方法。首先,利用格拉姆角场对初始一维时序信号进行数据处理得到二维图像数据;然后,分别将时序信号与图像数据输入多模态网络中进行特征提取,利用凌日搜索算法优化多模态网络参数,提升网络特征捕获能力;再通过特征融合模块,将时序特征和图像特征有效融合;最后,利用自注意力机制增强网络模型对下文信息的理解能力。结果表明,在无噪声环境下分类准确率达到99.2%,在不同信噪比环境下平均分类准确率达到98.3%。该研究能对新型电力系统中愈加复杂的电能质量扰动实现准确的分类,与传统分类方法相比鲁棒性较强。 展开更多
关键词 电能质量扰动 深度学习 格拉姆角场 特征融合 凌日搜索算法 自注意力机制
下载PDF
基于图卷积神经网络和格拉姆角场的电能质量扰动分类
20
作者 黄光磊 田启东 +3 位作者 林志贤 郑炜楠 徐特 李冰然 《电气传动》 2024年第3期84-90,共7页
由于新能源系统的广泛加入,系统中的电能质量扰动数量和种类也相应增加,而传统电能质量扰动(PQD)分类方法存在准确率和效率不高的问题,难以适应现有包含高新能源渗透率的电力系统的电能质量管理。因此,提出了一种基于图卷积神经网络(GCN... 由于新能源系统的广泛加入,系统中的电能质量扰动数量和种类也相应增加,而传统电能质量扰动(PQD)分类方法存在准确率和效率不高的问题,难以适应现有包含高新能源渗透率的电力系统的电能质量管理。因此,提出了一种基于图卷积神经网络(GCNNs)和格拉姆角场(GAF)的电能质量扰动分类方法。首先,对原始的PQD信号进行归一化和极坐标转化处理;然后采用GAF对不同种类的PQD一维信号进行图形化转换,生成包含不同PQD特征的二维图片;最后,采用GCNNs对不同种类的PQD图片进行训练和分类,实现不同PQD的分类。实验部分采用IEEE-39节点系统仿真并模拟不同种类的PQD曲线,对所提方法进行验证。实验结果表明,所提方法可以自动地进行特征的提取和优化,满足PQD识别和分类的高效性和准确性。 展开更多
关键词 电能质量扰动 图卷积神经网络 格拉姆角场 扰动分类
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部