In this paper, we prove the boundedness of Calderón-Zygmund singular integral operators <em>T</em><sub>Ω</sub> on grand Herz spaces with variable exponent under some conditions.
We consider multilinear commutators of singular integrals de ned by T→bf(x)=∫R^(n)mПi=1(bi(x)-bi(y))K(x,y)f(y)dy,where K is a standard Calderon-Zygmund kernel,m is a positive integer and~b=(b_(1);b_(2);…;b_(m))is ...We consider multilinear commutators of singular integrals de ned by T→bf(x)=∫R^(n)mПi=1(bi(x)-bi(y))K(x,y)f(y)dy,where K is a standard Calderon-Zygmund kernel,m is a positive integer and~b=(b_(1);b_(2);…;b_(m))is a family of m locally integrable functions.Based on the theory of variable exponent and on generalization of the BMO norm,we prove the boundedness of multilinear commutators T_(b) on grand variable Herz spaces.The result is still new even in the special case of m=1.展开更多
文摘In this paper, we prove the boundedness of Calderón-Zygmund singular integral operators <em>T</em><sub>Ω</sub> on grand Herz spaces with variable exponent under some conditions.
基金Supported by Natural Science Foundation of Anhui Higher Education Institutions(Grant No.KJ2021A1050).
文摘We consider multilinear commutators of singular integrals de ned by T→bf(x)=∫R^(n)mПi=1(bi(x)-bi(y))K(x,y)f(y)dy,where K is a standard Calderon-Zygmund kernel,m is a positive integer and~b=(b_(1);b_(2);…;b_(m))is a family of m locally integrable functions.Based on the theory of variable exponent and on generalization of the BMO norm,we prove the boundedness of multilinear commutators T_(b) on grand variable Herz spaces.The result is still new even in the special case of m=1.