An information theory method is proposed to test the. Granger causality and contemporaneous conditional independence in Granger causality graph models. In the graphs, the vertex set denotes the component series of the...An information theory method is proposed to test the. Granger causality and contemporaneous conditional independence in Granger causality graph models. In the graphs, the vertex set denotes the component series of the multivariate time series, and the directed edges denote causal dependence, while the undirected edges reflect the instantaneous dependence. The presence of the edges is measured by a statistics based on conditional mutual information and tested by a permutation procedure. Furthermore, for the existed relations, a statistics based on the difference between general conditional mutual information and linear conditional mutual information is proposed to test the nonlinearity. The significance of the nonlinear test statistics is determined by a bootstrap method based on surrogate data. We investigate the finite sample behavior of the procedure through simulation time series with different dependence structures, including linear and nonlinear relations.展开更多
Multivariate Time Series(MTS)forecasting is an essential problem in many fields.Accurate forecasting results can effectively help in making decisions.To date,many MTS forecasting methods have been proposed and widely ...Multivariate Time Series(MTS)forecasting is an essential problem in many fields.Accurate forecasting results can effectively help in making decisions.To date,many MTS forecasting methods have been proposed and widely applied.However,these methods assume that the predicted value of a single variable is affected by all other variables,ignoring the causal relationship among variables.To address the above issue,we propose a novel end-to-end deep learning model,termed graph neural network with neural Granger causality,namely CauGNN,in this paper.To characterize the causal information among variables,we introduce the neural Granger causality graph in our model.Each variable is regarded as a graph node,and each edge represents the casual relationship between variables.In addition,convolutional neural network filters with different perception scales are used for time series feature extraction,to generate the feature of each node.Finally,the graph neural network is adopted to tackle the forecasting problem of the graph structure generated by the MTS.Three benchmark datasets from the real world are used to evaluate the proposed CauGNN,and comprehensive experiments show that the proposed method achieves state-of-the-art results in the MTS forecasting task.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.60375003)the Chinese Aviation Foundation(Grant No.03153059).
文摘An information theory method is proposed to test the. Granger causality and contemporaneous conditional independence in Granger causality graph models. In the graphs, the vertex set denotes the component series of the multivariate time series, and the directed edges denote causal dependence, while the undirected edges reflect the instantaneous dependence. The presence of the edges is measured by a statistics based on conditional mutual information and tested by a permutation procedure. Furthermore, for the existed relations, a statistics based on the difference between general conditional mutual information and linear conditional mutual information is proposed to test the nonlinearity. The significance of the nonlinear test statistics is determined by a bootstrap method based on surrogate data. We investigate the finite sample behavior of the procedure through simulation time series with different dependence structures, including linear and nonlinear relations.
基金supported in part by the National Natural Science Foundation of China (No.62002035)the Natural Science Foundation of Chongqing (No.cstc2020jcyj-bshX0034).
文摘Multivariate Time Series(MTS)forecasting is an essential problem in many fields.Accurate forecasting results can effectively help in making decisions.To date,many MTS forecasting methods have been proposed and widely applied.However,these methods assume that the predicted value of a single variable is affected by all other variables,ignoring the causal relationship among variables.To address the above issue,we propose a novel end-to-end deep learning model,termed graph neural network with neural Granger causality,namely CauGNN,in this paper.To characterize the causal information among variables,we introduce the neural Granger causality graph in our model.Each variable is regarded as a graph node,and each edge represents the casual relationship between variables.In addition,convolutional neural network filters with different perception scales are used for time series feature extraction,to generate the feature of each node.Finally,the graph neural network is adopted to tackle the forecasting problem of the graph structure generated by the MTS.Three benchmark datasets from the real world are used to evaluate the proposed CauGNN,and comprehensive experiments show that the proposed method achieves state-of-the-art results in the MTS forecasting task.