A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy...A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy-duty trains. Firstly, a Kiencke stick-creep identification model was constructed, and the parameter identification task was transformed into a quadratic programming problem. Secondly, an iterative algorithm was constructed to solve the problem, into which a time-varying forgetting factor was added to track the change of the rail environment, and to solve the uncertainty problem of the wheel-rail environment. The Granger causality test was adopted to detect the interference, and then the weights of the current data were redistributed to solve the problem of noise interference in parameter identification. Finally, simulations were carried out and the results showed that the proposed method could track the change of the track environment in time, reduce the noise interference in the identification process, and effectively identify the adhesion performance parameters.展开更多
Currently, Granger-Geweke causality models have been widely applied to investigate the dynamic direction relationships among brain regions. In a previous study, we have found that the right hand finger-tapping task ca...Currently, Granger-Geweke causality models have been widely applied to investigate the dynamic direction relationships among brain regions. In a previous study, we have found that the right hand finger-tapping task can produce relatively reliable brain response. As an extension of our previous study, we developed an algorithm based on the classical Granger- Geweke causality model to further investigate the effective connectivity of three brain regions (left primary motor cortex (M1), supplementary motor area (SMA) and right cerebellum) that showed the most robust brain activations. Our computational results not only confirm the strong linear feedback among SMA, M1 and right cerebellum, but also demonstrate that M1 is the hub of these three regions indicated by the anatomy research. Moreover, the model predicts the high intermediate node density existing in the area between SMA and M1, which will stimulate the imaging experimentalists to carry out new experiments to validate this postulation.展开更多
文摘A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy-duty trains. Firstly, a Kiencke stick-creep identification model was constructed, and the parameter identification task was transformed into a quadratic programming problem. Secondly, an iterative algorithm was constructed to solve the problem, into which a time-varying forgetting factor was added to track the change of the rail environment, and to solve the uncertainty problem of the wheel-rail environment. The Granger causality test was adopted to detect the interference, and then the weights of the current data were redistributed to solve the problem of noise interference in parameter identification. Finally, simulations were carried out and the results showed that the proposed method could track the change of the track environment in time, reduce the noise interference in the identification process, and effectively identify the adhesion performance parameters.
文摘Currently, Granger-Geweke causality models have been widely applied to investigate the dynamic direction relationships among brain regions. In a previous study, we have found that the right hand finger-tapping task can produce relatively reliable brain response. As an extension of our previous study, we developed an algorithm based on the classical Granger- Geweke causality model to further investigate the effective connectivity of three brain regions (left primary motor cortex (M1), supplementary motor area (SMA) and right cerebellum) that showed the most robust brain activations. Our computational results not only confirm the strong linear feedback among SMA, M1 and right cerebellum, but also demonstrate that M1 is the hub of these three regions indicated by the anatomy research. Moreover, the model predicts the high intermediate node density existing in the area between SMA and M1, which will stimulate the imaging experimentalists to carry out new experiments to validate this postulation.