期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Biohydrogen production with anaerobic sludge immobilized by granular activated carbon in a continuous stirred-tank 被引量:2
1
作者 韩伟 陈红 +2 位作者 姚欣 李永峰 杨传平 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第4期509-513,526,共6页
A continuous stirred-tank reactor (CSTR) process with granular activated carbon (GAC) was developed for fermentation hydrogen production from molasses-containing wastewater by mixed microbial cultures. Operation a... A continuous stirred-tank reactor (CSTR) process with granular activated carbon (GAC) was developed for fermentation hydrogen production from molasses-containing wastewater by mixed microbial cultures. Operation at 35℃, an initial biomass of 17.74 g·L^-1 and hydraulic retention time (HRT) of 6 h, the CSTR reactor presented a continuous hydrogen production ability of 5.9 L·d^-1 and the biogas was free of methane throughout the experiment. Dissolved fermehtation products were predominated by ethanol and acetate acid, with smaller quantities of propionic acid, butyric acid and valeric acid. It was found that GAC could make the immobilized system durable and stable in response to organic load impacting and low pH value. When the organic loading rate (OLR) ranged from 8 kgCOD/(m^3d) to 4 kgCOD/(m^3d), stable ethanol-type fermentation was formed, and the ethanol and acetate concentrations account for 89% of the total liquid products. 展开更多
关键词 hydrogen production ethanol-type fermentation CSTR granular activated carbon low pH
下载PDF
Thermodynamics and kinetics of cadmium adsorption onto oxidized granular activated carbon 被引量:7
2
作者 HUANG Xin GAO Nai-yun ZHANG Qiao-li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第11期1287-1292,共6页
Cadmium sorption behavior of granular activated carbon oxidized with nitric acid was systematically studied by sets of the equilibrium and time-based experiments under various conditions. The cadmium adsorption capaci... Cadmium sorption behavior of granular activated carbon oxidized with nitric acid was systematically studied by sets of the equilibrium and time-based experiments under various conditions. The cadmium adsorption capacity of oxidized granular activated carbon enlarged with an increase in pH, and reduced with an increase in ionic strength. Experimental data were evaluated to find out kinetic characteristics. Adsorption processes were found to follow pseudo-second order rate equation. Adsorption isotherms correlate well with the Langmuir isotherm model and the maximum sorption capacity of cadmium evaluated is 51.02 μmol/g. Thermodynamic parameters were calculated based on Van't Hoff equation. Equilibrium constant Kd was evaluated from Freundlich isotherm model constants, Langmuir isotherm model constants, and isotherms, respectively. The average change of standard adsorption heat ΔH^0 was -25.29 kJ/mol. Negative ΔH^0 and ΔG^0 values indicate the adsorption process for cadmium onto the studied activated carbon is exothermic and spontaneous. The standard entropy ΔS^0 was also negative, which suggests a decrease in the freedom of the system. 展开更多
关键词 CADMIUM granular activated carbon THERMODYNAMICS KINETICS ADSORPTION
下载PDF
Combination of adsorption and biodegradation processes for textile effluent treatment using a granular activated carbon-biofilm configured packed column system 被引量:6
3
作者 ONG SoonAn TOORISAKA Eiichi +1 位作者 HIRATA Makoto HANO Tadashi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第8期952-956,共5页
The objective of this study was to investigate the feasibility of using a granular activated carbon-biofilm configured packed column system in the deeolodzation of azo dye Acid Orange 7-containing wastewater.The Acid ... The objective of this study was to investigate the feasibility of using a granular activated carbon-biofilm configured packed column system in the deeolodzation of azo dye Acid Orange 7-containing wastewater.The Acid Orange 7-degrading microbial from anaerobic sequencing batch reactor which treating the azo dye-containing wastewater for more than 200 d was immobilized on spent granular activated carbon(GAC)through attachment.The GAC-biofilm configured packed column system showed the ability to decolorize 10... 展开更多
关键词 granular activated carbon(GAC) color removal Acid Orange 7 azo dye IMMOBILIZATION
下载PDF
Mechanisms of granular activated carbon anaerobic fluidized-bed process for treating phenols wastewater 被引量:5
4
作者 LAO Shan gen (Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第1期132-135,共4页
Granular activated carbon (GAC) anaerobic fluidized bed reactor was applied to treating phenols wastewater. When influent phenol concentration was 1000 mg/L, volume loadings of phenol and COD Cr were 0 39 kg/(m... Granular activated carbon (GAC) anaerobic fluidized bed reactor was applied to treating phenols wastewater. When influent phenol concentration was 1000 mg/L, volume loadings of phenol and COD Cr were 0 39 kg/(m 3·d) and 0 98 kg/(m 3·d), their removal rates were 99 9% and 96 4% respectively. From analyzing above results, the main mechanisms of the process are that through fluidizing GAC, its adsorption is combined with biodegradation, both activities are brought into full play, and phenol in wastewater is effectively decomposed. Meanwhile problems concerning gas liquid separation and medium plugging are well solved. 展开更多
关键词 granular activated carbon (GAC) anaerobic fluidized bed PHENOL removal rate
下载PDF
High-valued Utilization of China Fir Sawdust Extracted Essential Oil:Preparation of Granular Activated Carbons for n-Butane Adsorption 被引量:2
5
作者 ZHU Guang-zhen,DENG Xian-lun,LIU Xiao-min Institute of Chemical Industry of Forestry Products,CAF National Engineering Lab.for Biomass Chemical Utilization +1 位作者 Key and Lab.on Forest Chemical Engineering,SFA,Key Lab.of Biomass Energy and Material,Jiangsu Province Nanjing 210042 《Agricultural Science & Technology》 CAS 2011年第2期179-182,共4页
[Objective] The aim was to study on the high-valued utilization of China Fir sawdust extracted essential oil.[Method] In the field of fir essential oil extraction,the processed China fir sawdust was used to prepare lo... [Objective] The aim was to study on the high-valued utilization of China Fir sawdust extracted essential oil.[Method] In the field of fir essential oil extraction,the processed China fir sawdust was used to prepare low-valued products.The high-valued utilization of China fir sawdust extracted essential oil(CFSEEO),namely as a precursor to prepare granular activated carbons(GACs),was attempted.The materials were characterized by ultimate analysis,SEM and XRD.[Rusult] A butane working capacity(BWC)of 14.3 g/100 ml was obtained by using the GACs with apparent density of 0.25 g/ml.It was available to introduce the technology of extracting essential oil from the China fir sawdust(CFS)in the industrial production process of activated carbons with high BWC(12.0-16.5 g/100 ml)and high surface area(2 000-2 630 m2/g)using phosphoric acid based on previous studies of the authors.[Conclusion] The resulting carbon prepared with the raw materials containing lower moisture exhibited a better property on n-butane adsorption. 展开更多
关键词 Essential oil China fir granular activated carbon BWC Phosphoric acid
下载PDF
Additivity of pore structural parameters of granular activated carbons derived from different coals and their blends 被引量:7
6
作者 Yao Xin Xie Qiang +3 位作者 Yang Chuan Zhang Bo Wan Chaoran Cui Shanshan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期661-667,共7页
A series of granular activated carbons (GACs) were prepared by briquetting method from Chinese coals of different ranks and their blends, with coal pitch as the binder. Pore structural parameters including BET speci... A series of granular activated carbons (GACs) were prepared by briquetting method from Chinese coals of different ranks and their blends, with coal pitch as the binder. Pore structural parameters including BET specific surface area (SBEr), total pore volume (Vr) and average pore diameter (da) were measured and cal- culated as well as process parameters such as yield of char (CY) and burn-off (B). The relationship between the pore structural parameters of the GAC from coal blend (BC-GAC) and the ones of the GACs from corresponding single coals (SC-GACs) was analyzed, in which an index, the relative error (δ), was presented to define the bias between fitted values and experimental values of these parameters of the BC-GACs. The results show that the BC-GAC keeps qualitatively the pore structural features of the SC-GACs; as concerned as the quantitative relationship, the pore structural parameters of the BC-GAC from coal blend consisting of non-caking coals can be obtained by adding proportionally the pore structural parameters of the SC-GACs with a less than 10%. Meanwhile, for the BC-GAC from coal blend containing weak caking bituminous coal, the δ increases up to 25% and the experimental pore size distribution differs greatly from the fitted one. 展开更多
关键词 granular activated carbon Coal blend Pore structural parameters Additivity
下载PDF
Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon 被引量:1
7
作者 JI Puhui QU Guangzhou LI Jie 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第10期1059-1065,共7页
The pentachlorophenol (PCP) adsorbed granular activated carbon (GAC) was treated by dielectric barrier discharge (DBD) plasma. The effects of DBD plasma on the structure of GAC and PCP decomposition were analyze... The pentachlorophenol (PCP) adsorbed granular activated carbon (GAC) was treated by dielectric barrier discharge (DBD) plasma. The effects of DBD plasma on the structure of GAC and PCP decomposition were analyzed by N2 adsorption, thermogravimetric, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and gas chromatographymass spectrometry (GC-MS). The experimental data of adsorption kinetics and thermodynamics of PCP on GAC were fitted with different kinetics and isotherm models, respectively. The results indicate that the types of N2 adsorption isotherm of GAC are not changed by DBD plasma, while the specific surface area and pore volume increase after DBD plasma treatment. It is found that the weight loss of the saturated GAC is the highest, on the contrary, the weight loss of DBD treated GAC is the least because of reduced PCP residue on the GAC. The XPS spectra and SEM image suggest that some PCP on the GAC is removed by DBD plasma, and the surface of GAC treated by DBD plasma presents irregular and heterogeneous morphology. The GC-MS identification of by-products shows that two main dechlorination intermediate products, tetrachlorophenol and trichlorophenol, are distinguished. The fitting results of experimental data of adsorption kinetics and thermodynamics indicate that the pseudo-first-order and pseudo-second order models can be used for the prediction of the kinetics of virgin GAC and DBD treated GAC for PCP adsorption, and the Langmuir isotherm model fits better with the data of adsorption isotherm than the Freundlich isotherm in the adsorption of PCP on virgin GAC and DBD treated GAC. 展开更多
关键词 granular activated carbon dielectric barrier discharge PLASMA ADSORPTION PENTACHLOROPHENOL DECOMPOSITION
下载PDF
Regeneration of Acid Orange 7 Exhausted Granular Activated Carbon Using Pulsed Discharge Plasmas 被引量:1
8
作者 王慧娟 郭贺 +1 位作者 刘永杰 依成武 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第10期881-886,共6页
In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC).... In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC). Regeneration of GAC was studied under different conditions of peak pulse discharge voltage and water pH, as well as the modification effect of GAC by the pulse discharge process, to figure out the regeneration efficiency and the change of the GAC structure by the PDP treatment. The obtained results showed that there was an appropriate peak pulse voltage and an optimal initial pH value of the solution for GAC regeneration. Analyses of scanning electron microscope (SEM), Boehm titration, Brunauer-Emmett-Teller (BET), Horvath-Kawazoe (HK), and X-ray Diffraction (XRD) showed that there were more mesopore and macropore in the regenerated GAC and the structure turned smoother with the increase of discharge voltage; the amount of acidic functional groups on the GAC surface increased while the amount of basic functional groups decreased after the regeneration process. From the result of the XRD analysis, there were no new substances produced on the GAC after PDP treatment. 展开更多
关键词 pulsed discharge plasma acid orange 7 granular activated carbon REGENERATION pore structure functional groups
下载PDF
Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration
9
作者 唐首锋 李娜 +2 位作者 綦金榜 袁德玲 李杰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第5期92-100,共9页
A combined method of granular activated carbon(GAC) adsorption and bipolar pulse dielectric barrier discharge(DBD) plasma regeneration was employed to degrade phenol in water.After being saturated with phenol,the ... A combined method of granular activated carbon(GAC) adsorption and bipolar pulse dielectric barrier discharge(DBD) plasma regeneration was employed to degrade phenol in water.After being saturated with phenol,the GAC was filled into the DBD reactor driven by bipolar pulse power for regeneration under various operating parameters.The results showed that different peak voltages,air flow rates,and GAC content can affect phenol decomposition and its major degradation intermediates,such as catechol,hydroquinone,and benzoquinone.The higher voltage and air support were conducive to the removal of phenol,and the proper water moisture of the GAC was 20%.The amount of H2 O2 on the GAC was quantitatively determined,and its laws of production were similar to phenol elimination.Under the optimized conditions,the elimination of phenol on the GAC was confirmed by Fourier transform infrared spectroscopy,and the total removal of organic carbons achieved 50.4%.Also,a possible degradation mechanism was proposed based on the HPLC analysis.Meanwhile,the regeneration efficiency of the GAC was improved with the discharge treatment time,which attained 88.5% after 100 min of DBD processing. 展开更多
关键词 granular activated carbon regeneration dielectric barrier discharge plasma phenoldegradation bipolar pulse power
下载PDF
Inactivation Removal for Excess Propagation of Copepod of Zooplankton in Ozone-Granular Activated Carbon Filter in Southern China
10
作者 林涛 陈卫 王磊磊 《Journal of Donghua University(English Edition)》 EI CAS 2009年第6期639-644,共6页
Comparative experiments on the inactivation of Copepod were investigated in southern China. The 100% of inactivation effect may be attained by 3.0 mg/L of ozone for contacting time of 25 min, whereas 0.5 mg/L of dosag... Comparative experiments on the inactivation of Copepod were investigated in southern China. The 100% of inactivation effect may be attained by 3.0 mg/L of ozone for contacting time of 25 min, whereas 0.5 mg/L of dosage resulted in only 30% of inactivation rate. Copepod may not be completely inactivated by ozone oxidation for feasible dosage limited by higher bromide in raw water. The favorable environment of granular activated carbon (GAC) filter provided Copepod with conditions for excess propagation, The disinfection experimental results show that the inactivation rate is 90% by 2.0 mg/L of chloramines for contacting time of 30 min, whereas only 70% is attained with chlorine. The GC-MS examination indicates that the total organic substance is increased to 92 specie: inciuding 13 sorts of halogenated hydrocarbon by chlorine disnfection, which is more than that of chloramines. More products of bromiinated trihalomethanes occur in treated water by chlorine, disinfection and total amount of THMs is 3 times as high as that of chloramines. 展开更多
关键词 drinking water Copepod of zooplankton granular activated carbon (GAC) filter INACTIVATION iisinfiection
下载PDF
Removal of Heavy Metals (Copper, Manganese and Zinc) from Industrial Wastewater of Baiji Refinery by Granular Activated Carbon
11
作者 dr Muzher M. Ibrahem AlDoury Abbas Ali Kanoosh 《Journal of Chemistry and Chemical Engineering》 2012年第9期789-798,共10页
The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorpti... The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorption process have been studied, which are granular activated carbon thickness, H, inlet pollutant concentration, Cv, and liquid hourly space velocity, LHSV. All experiments were performed under constant temperature at 25℃ and pH = 7. The experimental apparatus was designed and constructed to enable controlling of the operating conditions. Employing five levels for each of H and LHSV and three levels for Co required 75 runs for each metal. Box-Wilson method was used to reduce the number of experiments to 15 for each metal. The results indicated that copper, manganese, and zinc can be completely removed from wastewater using activated carbon. However, breakthrough time for zinc is low. It is also shown that breakthrough time (TB) and exhaustion time (TE) are inversely proportional with pollutant concentration and LHSV (liquid hour space velocity) while it is directly proportional with the thickness of activated carbon column. 展开更多
关键词 GAC granular activated carbon heavy metals oil refinery wastewater.
下载PDF
Interactions between H_(2)O_(2)and dissolved organic matter during granular activated carbon-based residual H_(2)O_(2)quenching from the upstream UV/H_(2)O_(2)process
12
作者 Yaoyao Kang Junfeng Lian +6 位作者 Yichun Zhu Zuwen Liu Wentao Li Huiyu Dong Yuanyue Wang Jinfeng Zeng Zhimin Qiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第6期139-149,共11页
Granular activated carbon(GAC)filtration can be employed to synchronously quench residual H_(2)O_(2)from the upstream UV/H_(2)O_(2)process and further degrade dissolved organicmatter(DOM).In this study,rapid small-sca... Granular activated carbon(GAC)filtration can be employed to synchronously quench residual H_(2)O_(2)from the upstream UV/H_(2)O_(2)process and further degrade dissolved organicmatter(DOM).In this study,rapid small-scale column tests(RSSCTs)were performed to clarify the mechanisms underlying the interactions between H_(2)O_(2)and DOM during the GAC-based H_(2)O_(2)quenching process.It was observed that GAC can catalytically decompose H_(2)O_(2),with a long-lasting high efficiency(>80%for approximately 50,000 empty-bed volumes).DOM inhibited GAC-based H_(2)O_(2)quenching via a pore-blocking effect,especially at high concentrations(10 mg/L),with the adsorbed DOM molecules being oxidized by the continuously generated·OH;this further deteriorated the H_(2)O_(2)quenching efficiency.In batch experiments,H_(2)O_(2)could enhance DOM adsorption by GAC;however,in RSSCTs,it deteriorated DOM removal.This observation could be attributed to the different·OH exposure in these two systems.It was also observed that aging with H_(2)O_(2)and DOM altered the morphology,specific surface area,pore volume,and the surface functional groups of GAC,owing to the oxidation effect of H_(2)O_(2)and·OH on the GAC surface as well as the effect of DOM.Addi-tionally,the changes in the content of persistent free radicals in the GAC samples were insignificant following different aging processes.This work contributes to enhancing understanding regarding the UV/H_(2)O_(2)-GAC filtration scheme,and promoting the application in drinking water treatment. 展开更多
关键词 granular activated carbon H_(2)O_(2)quenching Dissolved organic matter Rapid small-scale column tests Persistent free radicals
原文传递
Nitrate removal from groundwater using chemically modified coconut husk based granular activated carbon:characterization of the adsorbent,kinetics and mechanism
13
作者 Solomon K.M.Huno Jewel Das +2 位作者 Eric Dvan Hullebusch Ajit P.Annachhatre Eldon R.Rene 《Systems Microbiology and Biomanufacturing》 2023年第2期370-383,共14页
In this study,a highly porous chemically activated granular activated carbon(GAC)was prepared from coconut husk and tested as an adsorbent to remove nitrate from contaminated groundwater.The prepared GAC was character... In this study,a highly porous chemically activated granular activated carbon(GAC)was prepared from coconut husk and tested as an adsorbent to remove nitrate from contaminated groundwater.The prepared GAC was characterized by Fouriertransform infrared spectroscopy(FTIR),thermogravimetric and differential thermal analysis(TGA/DTA),scanning electron microscopy(SEM)and the Brunauer-Emmett-Teller(BET)surface area(SBET)analysis.The effects of various process parameters such as initial nitrate concentration,contact time and adsorbent dose on nitrate removal efficiency(response)by the modified GAC were investigated using the statistically significant response surface methodology and Box-Behnken design of experiments.The experimental data were fitted to well-known adsorption isotherms and kinetic models to ascertain the mechanism of the adsorption process.Analysis of variance(ANOVA)was performed to determine the significance of the individual and the interactive effects of process variables on the response.The BET surface area(SBET)and micropore volume of the prepared GAC from coconut husk was 1120 m^(2)/g and 0.392 cm^(3)/g,respectively.The experimental results showed that physisorption was the main adsorption mechanism governing the process,while the rate of adsorption was limited at initial nitrate concentrations>10 mg/L.The Langmuir mono-layer adsorption isotherm best fitted the experimental data with a maximum adsorption capacity of 6.0±1.3 mg/g(~92.5%)with an adsorbent dose of 0.1 g/50 mL,an equilibrium time of 6 h at 28±2℃,and at pH 7.6(±0.2).Among the tested process variables,the adsorbent dose and initial nitrate concentration showed significant effects on the nitrate removal efficiency. 展开更多
关键词 Nitrate adsorption GROUNDWATER granular activated carbon Response surface methodology(RSM) Box-Behnken Coconut Husk
原文传递
Degradation kinetics and mechanism of trace nitrobenzene by granular activated carbon enhanced microwave/hydrogen peroxide system 被引量:6
14
作者 Dina Tan Honghu Zeng +3 位作者 Jie Liu Xiaozhang Yu Yanpeng Liang Lanjing Lu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第7期1492-1499,共8页
The kinetics of thedegradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202 ) systemwas studied. Effects of pH, NB initial concentration and t... The kinetics of thedegradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202 ) systemwas studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiencywere examined. Itwas found that the reaction rate fitswell to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced thedegradation rate of NB inwater. Under a given condition (MW power300 W, H202dosage 10 mg/L, pH 6.85 and temperature (60 ± 5)°C), thedegradation rate of NBwas 0.05214 min 1when4 g/L GACwas added. In general, alkaline pHwas better for NBdegradation; however, the optimum pHwas 8.0 in the tested pH value range of4.0-12.0. At H202dosage of 10 mg/L and GACdosage of4 g/L, the removal of NBwasdecreasedwith increasing initial concentrations of NB, indicating that a low initial concentrationwas beneficial for thedegradation of NB. These results indicated that the MW/GAC/H202 processwas effective for trace NBdegradation inwater. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction anddehydrogenation reaction enhanced NBdegradation. 展开更多
关键词 MICROWAVE granular activated carbon hydrogen peroxide NITROBENZENE hydroxyl radicals
原文传递
Fluorescence spectroscopic studies of the effect of granular activated carbon adsorption on structural properties of dissolved organic matter fractions 被引量:5
15
作者 Shuang XUE Qingliang ZHAO +3 位作者 Liangliang WEI Xiujuan HUI Xiping MA Yingzi LIN 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2012年第6期784-796,共13页
This work investigated the effect of granular activated carbon adsorption (GACA) on fluorescence characteristics of dissolved organic matter (DOM) in secondary effluent, by means of excitation-emission matrix (EE... This work investigated the effect of granular activated carbon adsorption (GACA) on fluorescence characteristics of dissolved organic matter (DOM) in secondary effluent, by means of excitation-emission matrix (EEM) spectra, the fluorescence regional integra- tion (FRI) method, synchronous spectra, the fluorescence index defined as the ratio of fluorescence emission intensity at wavelength 450nm to that at 500nm at excitation (λex)= 370 am, and the wavelength that corre- sponds to the position of the normalized emission band at its half intensity (λ0.5). DOM in the secondary effluent from the North Wastewater Treatment Plant (Shenyang, China) was fractionated using XAD resins into 5 fractions: hydrophobic acid (HPO-A), hydrophobic neutral (HPO- N), transphilic acid (TPI-A), transphi|ic neutral (TPI-N) and hydrophilic fraction (HPI). Results showed that fluorescent materials in HPO-N and TPI-N were less readily removed than those in the other fractions by GACA. The relative content of fluorescent materials in HPO-A, TPI-A and HPI decreased whereas that in HPO- N and TPI-N increased as a consequence of GACA. Polycyclic aromatics in all DOM fractions were preferen- tially absorbed by GACA, in comparison with bulk DOM expressed as DOC. On the other hand, the adsorption of aromatic amino acids and humic acid-like fluorophores exhibiting fluorescence peaks in synchronous spectra by GACA seemed to be dependent on the acid/neutralproperties of DOM fractions. All five fractions had decreased fluorescence indices as a result of GACA. GACA led to a decreased λ0.5 value for HPO-A, increased ,λ0.5 values for HPO-N, TPI-A and HPI, and a consistent λ0.5 value for TPI-N. 展开更多
关键词 granular activated carbon adsorption dis-solved organic matter FRACTIONATION FLUORESCENCE
原文传递
Anaerobic tapered fluidized bed reactor for starch wastewater treatment and modeling using multilayer perceptron neural network 被引量:8
16
作者 RANGASAMY Parthiban PVR Iyer GANESAN Sekaran 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第12期1416-1423,共8页
treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental ... treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady- state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m^3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m^3/(m^3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m^3·d), the COD removal efficiency decreased. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146. 展开更多
关键词 anaerobic digestion tapered fluidized bed reactor organic loading rate BIOGAS mesoporous granular activated carbon modeling artificial neural network
下载PDF
Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics 被引量:3
17
作者 Yuqing Xu Zedong Lu +1 位作者 Wenjun Sun Xiaohui Zhang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2021年第6期391-403,共13页
Optimizing the characteristics of granular activated carbon(GAC)can improve the performance of biologically activated carbon(BAC)filters,and iodine value has always been the principal index for GAC selection.However,i... Optimizing the characteristics of granular activated carbon(GAC)can improve the performance of biologically activated carbon(BAC)filters,and iodine value has always been the principal index for GAC selection.However,in this study,among three types of GAC treating the same humic acidcontaminated water,one had an iodine value 35%lower than the other two,but the dissolved organic carbon removal efficiency of its BAC was less than 5%away from the others.Iodine value was found to influence the removal of different organic fractions instead of the total removal efficiency.Based on the removal and biological characteristics,two possible mechanisms of organic matter removal during steady-state were suggested.For GAC with poor micropore volume and iodine value,high molecular weight substances(3500–9000 Da)were removed mainly through degradation by microorganisms,and the biodegraded organics(soluble microbial by-products,<3500 Da)were released because of the low adsorption capacity of activated carbon.For GAC with higher micropore volume and iodine value,organics with low molecular weight(<3500 Da)were more easily removed,first being adsorbed by micropores and then biodegraded by the biofilm.The biomass was determined by the pore volume with pore diameters greater than 100μm,but did not correspond to the removal efficiency.Nevertheless,the microbial community structure was coordinate with both the pore structure and the organic removal characteristics.The findings provide a theoretical basis for selecting GAC for the BAC process based on its pore structure. 展开更多
关键词 granular activated carbon Biologically activated carbon filter Bacterial community structure Pore structure
原文传递
Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process 被引量:4
18
作者 Qian Zhao Hongjun Han +3 位作者 Baolin Hou Haifeng Zhuang Shengyong Jia Fang Fang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第11期2231-2239,共9页
A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anae... A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAG compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). 展开更多
关键词 Coal gasification wastewater Short-cut nitrogen removal granular activated carbon PCR-DGGE Denitrification enhancement
原文传递
Pilot Study on Drinking Water Advanced Treatment by GAC-MF System 被引量:1
19
作者 王欣泽 薛罡 +1 位作者 王宝贞 王琳 《Journal of Donghua University(English Edition)》 EI CAS 2004年第1期135-139,共5页
The pilot performance of the combined GAC-MF membrane process for drinking water advanced treatment was described. In the process of GAC adsorption, under the conditions of 20 min HRT and 6 m/h filtration rate, the re... The pilot performance of the combined GAC-MF membrane process for drinking water advanced treatment was described. In the process of GAC adsorption, under the conditions of 20 min HRT and 6 m/h filtration rate, the removal efficiencies of UV_(254) and trichloromethane could reach 40% and 50% respectively and the UV_(254) and trichloromethane in system effluent was less than 0.015 cm^(-1) and 5μg/L respectively. In the post MF membrane process, MF membrane effectively retained the particles and bacteria in raw water. The effluent turbidity was less than 0.2 NTU and no bacteria were detected at all in permeate. A computer-controlled system was employed to control this system. The membrane operating parameters of backwash interval, duration and flux were studied. The backwash interval of 10-min, 20-min and 60-min was researched respectively, and the variation of trans-membrane pressure was also analyzed. Consequently short backwash interval was recommended under the same water consume. 展开更多
关键词 granular activated carbon adsorption MF membrane drinking water advanced treatment
下载PDF
Drinking water biotic safety of particles and bacteria attached to fines in activated carbon process
20
作者 CHEN Wei LIN Tao WANG Leilei 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2007年第3期280-285,共6页
In this paper,the drinking water biotic safety of particles and bacteria attached to fines in activated carbon process was investigated by actual treatment process and advanced treatment pilot trial with granular acti... In this paper,the drinking water biotic safety of particles and bacteria attached to fines in activated carbon process was investigated by actual treatment process and advanced treatment pilot trial with granular activated carbon.In the experiment,the particles were detected by IBR particle calculating instrument,the activated carbon fines were counted on the basis of the most probable number(MPN)with a microscope,the total number of bacteria was analyzed between the conventional agar culture medium and the one with R2A,and the bacteria attached to activated carbon fines was resolved by the homogenization technique.The experi-mental results showed that the average total number of parti-cles was 205 CNT/mL in the activated carbon effluent during a filter cycle,of which the number of particles with sizes>2μm was 77 CNT/mL more than the present particle con-trol criterion of the American drinking water product standard(50 CNT/mL).The backwash of low density and long dura-tion lowered particle number in the effluent.The MPN of activated carbon fines in the effluent was between 400 and 600 CNT/L,which accounted for less than 5‰ of the total particles from activated carbon filtration for a poor relative level(R^(2)=0.34).The microorganisms in activated carbon effluent consisted mostly of heterotrophic bacillus and the total bacteria number was five times as high as that of the inflow,i.e.the effluent from sand filter.The actual bacteria number may be truly indicated by the detection technique with R2A culture medium compared with the traditional agar cultivation.The inactivation efficiency of bacteria attached to activated carbon fines was less than 40%under 1.1 mg/L of chlorine contacting for 40 min.Results showed that the particles and bacteria attached to activated carbon fines may influence drinking water biotic safety,and that the effective control measures need to be further investigated. 展开更多
关键词 drinking water granular activated carbon PARTICLES activated carbon fines BACTERIA DISINFECTION
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部