Electrostatic phenomena are commonly observed in the processing of solids. However. the working mech- anism of electrostatic charge generation for single granules and particularly, their electrostatic equilibria have ...Electrostatic phenomena are commonly observed in the processing of solids. However. the working mech- anism of electrostatic charge generation for single granules and particularly, their electrostatic equilibria have not been properly understood. In this work, repeated-sliding charging experiments with single granules were investigated for their electrostatic generation particularly from the perspective of tribo- electrification equilibrium. Factors including granule length-ratio, sliding face shape, sliding times, sliding area, sliding velocity, front-facing edge, and sliding-plate inclined-angle were found to have an obvious effect on granule charge generation. Length-ratio and sliding area have significant effects as the gran- ules evolved toward an equilibrium state. Equilibrium charge is suggested as a variable expressing the charging propensity of the material. In addition, under the same working conditions, a semi-cylindrical granule generates greater charge than a rectangular granule.展开更多
In solid processing systems, electrostatic problems are commonly observed for granules of various shapes. However, a complete understanding of the basic dependence of electrostatic charge generation on particle shape ...In solid processing systems, electrostatic problems are commonly observed for granules of various shapes. However, a complete understanding of the basic dependence of electrostatic charge generation on particle shape has yet to be established. This observation motivated the present study on examining the effect of granular shape on electrostatics. In this study, polyvinyl chloride (PVC) granules (diameter 1.1-4.1 ram, in the shape of a triangle or trapezium) were first discharged to remove any residual charges and sub- sequently their electrostatic charging characteristics were studied by allowing a granule to slide along a pipe wall. Several factors such as granular front-facing angle, length-ratio, sliding area, sliding orienta- tion, sliding times, and relative humidity were considered when studying their effects on the electrostatic charging of granules. It was found that triangular granules with smaller front-facing angles tended to generate more electrostatic charge. The amount of electrostatic charge increased with granular length- ratio and sliding area but decreased with humidity. In addition, granular sliding in the orientation of the front-facing angle (for triangular granules) or the short side (for trapezoidal granules) generated more electrostatic charge than that in the orientation of the long side. For both granule shapes, the elec- trostatic charge increased with granular sliding times and reached a saturated state after around 8-9 sliding movements. The saturated electrostatic charge increased with either granular length ratio or sliding area.展开更多
基金This work was supported by National Natural Science Foun- dation of China (Grant Nos. 51376153 and 51406235) Science Foundation of China University of Petroleum, Beijing (Grant No. 2462013YJRC030). We greatly acknowledge the suggestions given by Professor Chi-Hwa Wang (National University of Singapore) on the electrostatics characterization and equilibrium charge concept in this study.
文摘Electrostatic phenomena are commonly observed in the processing of solids. However. the working mech- anism of electrostatic charge generation for single granules and particularly, their electrostatic equilibria have not been properly understood. In this work, repeated-sliding charging experiments with single granules were investigated for their electrostatic generation particularly from the perspective of tribo- electrification equilibrium. Factors including granule length-ratio, sliding face shape, sliding times, sliding area, sliding velocity, front-facing edge, and sliding-plate inclined-angle were found to have an obvious effect on granule charge generation. Length-ratio and sliding area have significant effects as the gran- ules evolved toward an equilibrium state. Equilibrium charge is suggested as a variable expressing the charging propensity of the material. In addition, under the same working conditions, a semi-cylindrical granule generates greater charge than a rectangular granule.
基金supported by the Fujian Province Natural Science Foundation under Grant No.2012J01235
文摘In solid processing systems, electrostatic problems are commonly observed for granules of various shapes. However, a complete understanding of the basic dependence of electrostatic charge generation on particle shape has yet to be established. This observation motivated the present study on examining the effect of granular shape on electrostatics. In this study, polyvinyl chloride (PVC) granules (diameter 1.1-4.1 ram, in the shape of a triangle or trapezium) were first discharged to remove any residual charges and sub- sequently their electrostatic charging characteristics were studied by allowing a granule to slide along a pipe wall. Several factors such as granular front-facing angle, length-ratio, sliding area, sliding orienta- tion, sliding times, and relative humidity were considered when studying their effects on the electrostatic charging of granules. It was found that triangular granules with smaller front-facing angles tended to generate more electrostatic charge. The amount of electrostatic charge increased with granular length- ratio and sliding area but decreased with humidity. In addition, granular sliding in the orientation of the front-facing angle (for triangular granules) or the short side (for trapezoidal granules) generated more electrostatic charge than that in the orientation of the long side. For both granule shapes, the elec- trostatic charge increased with granular sliding times and reached a saturated state after around 8-9 sliding movements. The saturated electrostatic charge increased with either granular length ratio or sliding area.