In granulation, fine particles combine to form a coarse granule in the form of a particle matrix partially or fully saturated with a binder liquid. The final product of granulation possesses a wide variety of granule ...In granulation, fine particles combine to form a coarse granule in the form of a particle matrix partially or fully saturated with a binder liquid. The final product of granulation possesses a wide variety of granule size distributions with surface mean diameters which differ with operating conditions. The final granule size depends on the operating conditions, e.g. operating gas velocity, inlet air temperature, initial feed particle size, and viscosity of the binder. The objective of this paper is to find out the uniformity in the relation between the granule mass fraction in the final granule size distribution and the number of feed particles present in the granules. The total number of granules obtained depends on the experimental conditions but the granule mass fraction and the number of feed particles forming a single granule are independent of operating variables, feed material and method of granulation. The paper purports further to compare the uniform nature of mass fraction of the granules in final granule size distribution and the primary particles required to form that particular granule size irrespective of experimental conditions of granulation.展开更多
文摘In granulation, fine particles combine to form a coarse granule in the form of a particle matrix partially or fully saturated with a binder liquid. The final product of granulation possesses a wide variety of granule size distributions with surface mean diameters which differ with operating conditions. The final granule size depends on the operating conditions, e.g. operating gas velocity, inlet air temperature, initial feed particle size, and viscosity of the binder. The objective of this paper is to find out the uniformity in the relation between the granule mass fraction in the final granule size distribution and the number of feed particles present in the granules. The total number of granules obtained depends on the experimental conditions but the granule mass fraction and the number of feed particles forming a single granule are independent of operating variables, feed material and method of granulation. The paper purports further to compare the uniform nature of mass fraction of the granules in final granule size distribution and the primary particles required to form that particular granule size irrespective of experimental conditions of granulation.