Objective: To verify the antigen association of MAF-J6-1 receptor with M-CSFR and to further study the role of M-CSF and its receptor mediated juxtacrine in promoting leukemic cell proliferation. Methods: Monoclonal a...Objective: To verify the antigen association of MAF-J6-1 receptor with M-CSFR and to further study the role of M-CSF and its receptor mediated juxtacrine in promoting leukemic cell proliferation. Methods: Monoclonal antibody (McAb) of MAF-J6-1R RE2 and polyclonal antibody (PolyAb) of rhM-CSFR were prepared. The specificity of McAb RE2 to M-CSFR was confirmed by indirect ELISA, cross-neutralizing assay with J6-1 cell colony formation and neutralization test by ELISA. Results: the reactive activity of purified RE2 to M-CSFR was over 1: 16000. The inhibitory activity of M-CSFR and MAF-J6-1R could be blocked by RE2 and anti-M-CSFR antibody. The reactivity of RE2 to M-CSFR could be reduced by M-CSFR. Conclusion: The specificity of RE2 to M-CSFR was confirmed and the antigen association of MAF-J6-1R with M-CSFR was proved. It suggests that M-CSF and its receptor mediated auto-juxtacrine stimulation could be an operative mechanism in either leukemia or nonhematological malignancies.展开更多
AIM: To investigate the effects of granulocyte-colony stimulating factor (G-CSF) on peritoneal defense mechanisms and bacterial translocation after systemic 5-Fluorouracil (5-FU) administration. METHODS: Thirty ...AIM: To investigate the effects of granulocyte-colony stimulating factor (G-CSF) on peritoneal defense mechanisms and bacterial translocation after systemic 5-Fluorouracil (5-FU) administration. METHODS: Thirty Wistar albino rats were divided into three groups; the control, 5-FU and 5-FU + G-CSF groups. We measured bactericidal activity of the peritoneal fluid, phagocytic activity of polymorphonuclear leucocytes in the peritoneal fluid, total peritoneal cell counts and cell types of peritoneal washing fluid. Bacterial translocation was quantified by mesenteric lymph node, liver and spleen tissue cultures. RESULTS: Systemic 5-FU reduced total peritoneal cell counts, neutrophUs and macrophage numbers. It also altered bactericidal activity of the peritoneal fluid and phagocytic activity of polymorphonuclear leucocytes in the peritoneal fluid. 5-FU also caused significant increase in frequencies of bacterial translocation at the liver and mesenteric lymph nodes. G-CSF decreased bacterial translocation, it significantly enhanced bactericidal activity of the peritoneal fluid and phagocytic activity of polymorphonuclear leucocytes in the peritoneal fluid. It also increased total peritoneal cell counts, neutrophils and macrophage numbers. CONCLUSION: Systemic 5-FU administration caused bacterial translocation, decreased the bactericidal activity of peritoneal fluid and phagocytic activity of polymorphonuclear leucocytes in the peritoneal fluid. G-CSF increased both bactericidal activity of the peritoneal fluid and phagocytic activity of polymorphonuclear leucocytes in the peritoneal fluid, and prevented the bacterial translocation. We conclude that intraperitoneal GCSF administration protects the effects of systemic 5-FU on peritoneal defense mechanisms.展开更多
The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate / κ-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with ...The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate / κ-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with G-CSF and the complex was detected. The binding constant and stoichiometry were determined to be 1.2×106 (mol/L)-1 and 3:1, respectively. However, the interaction between κ-carrageenan oligosaccharide and G-CSF was not found.展开更多
Objective: To study the potential role of cellular macrophage colony-stimulating factor (cM-CSF) and cellular macrophage colony-stimulating factor receptor (cM-CSF-R) with breast cancer and hepatoma and search the way...Objective: To study the potential role of cellular macrophage colony-stimulating factor (cM-CSF) and cellular macrophage colony-stimulating factor receptor (cM-CSF-R) with breast cancer and hepatoma and search the way for clinical application. Methods: Frozen surgical specimens from 48 breast cancer patients, including 29 cases of histological grade II and 19 eases of grade III, and 16 hepatoma patients were investigated by Avidin Biotin Complex (ABC) immunohistochemical assay with anti-M-CSF monoclonal antibody (Mab) and anti-M-CSF-R Mab. Pathohistological examination was performed as well. Results: cM-CSF and cM-CSF-R were detected in tested specimens. The expression levels of cM-CSF and cM-CSF-R in grade III group were higher than in grade II group and more higher than control group hyperplasia of breast. Hepatoma tissues also showed higher expression level of cM-CSF and cM-CSF-R than normal adult and fetal liver. Conclusion: Breast cancer and hepatoma tissues presented higher expression levels of cM-CSF and cM-CSF-R than control and expression level might be related with tumor’s process.展开更多
Objective: To investigate the potential role of macrophage colony-stimulating factor (M-CSF) and macrophage colony-stimulating factor receptor (M-CSF-R) on the growth of human hepatoma cells. Methods: Specimens of dif...Objective: To investigate the potential role of macrophage colony-stimulating factor (M-CSF) and macrophage colony-stimulating factor receptor (M-CSF-R) on the growth of human hepatoma cells. Methods: Specimens of different origin, including tissues of human hepatocellular carcinoma (HCC), human fetal liver (FL) and normal liver (NL), the hepatoma cell lines, as well as the peripheral blood mononuclear cells (PBMC) from patients with HCC or liver metastatic tumor (LMT), were used to detect the expression levels of M-CSF and M-CSF-R by ABC immunohistochemistry staining and reverse transcription polymerase chain reaction methods the expression levels of M-CSF and M-CSF-R. Influence of monoclonal antibody against M-CSF (B5) or M-CSF-R (RE2) on proliferation ability of hepatoma cell linesin vitro was also studied. Results: The results showed that hepatoma tissues produced elevated levels of both M-CSF and M-CSF-R compared with those of fetal liver (P<0.001). The M-CSF/M-CSF-R expression levels of PBMC from hepatoma patients were higher than those of LMT patients (P<0.01,P<0.05) and the normal people (P<0.001). The hepatoma cell lines showed strong positive for M-CSF and M-CSF-R production. Both B5 and RE2 displayed a dose-dependent inhibitory effect on the growth and proliferation of hepatoma cells. Conclusion: The study indicates a co-expression model for M-CSF-R in hepatoma cells, suggesting an involvement of M-CSF/M-CSF-R in growth signaling of those malignant cells. The M-CSF/M-CSF-R seems to function through an autonomy mechanism in human hepatoma.展开更多
Colony-stimulating factor 1 receptor (CSF-1R) is an important regulator of monocytes/macrophages (MO/MФ). Although several CSF-1R genes have been identified in teleosts, the precise role of CSF- 1R in ayu (Pleco...Colony-stimulating factor 1 receptor (CSF-1R) is an important regulator of monocytes/macrophages (MO/MФ). Although several CSF-1R genes have been identified in teleosts, the precise role of CSF- 1R in ayu (Plecoglossus altivelis) remains unclear. In this study, we characterized the CSF-1R homologue from P. altivelis, and named it PaCSF-1R. Multiple sequence alignment and phylogenetic tree analysis showed that PaCSF-1R was most closely related to that of Japanese ricefish (Oryzias latipes). Tissue distribution and expression analysis showed that the PaCSF-1R transcript was mainly expressed in the head kidney-derived MO/MФ, spleen, and head kidney, and its expression was significantly altered in various tissues upon Vibrio anguillarum infection. After PaCSF-1R neutralization for 48 h, the phagocytic activity of MO/MФ was significantly decreased, suggesting that PaCSF-1R plays a role in regulating the phagocytic function of ayu MO/M(P.展开更多
Objective: To investigate the serum levels of soluble macrophage colony-stimulating factor receptor (M-CSFsR) in normal subjects and patients with hematological diseases and its clinical implications in hematological ...Objective: To investigate the serum levels of soluble macrophage colony-stimulating factor receptor (M-CSFsR) in normal subjects and patients with hematological diseases and its clinical implications in hematological diseases. Methods: The concentration of M-CSFsR was determined by ELISA. The serum M-CSFsR was identified and characterized by immunoprecipitation and Western blotting. Results: The mean serum level of M-CSFsR of 123 normal individuals was 0.48 ng/ml ± 0.41 ng/ml. Immunoprecipitation and Western blotting assay revealed a ~ 90kD band of serum M-CSFsR. The mean serum M-CSFsR level of 60 patients with acute lymphoblastic leukemia (ALL), 36 patients with acute myeloblastic leukemia (AML), 13 patients with myelodysplastic syndrome (MDS) and 42 patients with aplastic anemia (AA) .were 0.22 ng/ml±0.23 ng/ml, 0.17 ng/ml±0.16 ng/ml, 0.19 ng/ml±0.16 ng/ml and 0.23 ng/ml±0.21 ng/ml, respectively, which were significantly lower than that of normal subjects (P=0.002 ,P<0.0001,P<0.0001 andP<0.0001). The mean serum M-CSFsR level of 51 idiopathic thrombocytopenic purpura (ITP) patients was significantly higher than that of normal subjects (2.05 ng/ml±2.75 ng/ml,P<0.0001). Conclusion: The serum M-CSFsR levels of patients with ALL, AML, MDS and AA were significantly lower, while the level of patients with ITP was significantly higher than that of normal individuals. Patients with severe ITP (platelet count<30×l09/L) had the highest M-CSFsR level. It suggested that the abnormal levels of serum M-CSFsR may associate with some hematological diseases and may contribute to the pathological process.展开更多
Recombinant human granulocyte-colony stimulating factor (hG-CSF) has been shown to protect the nervous system after brain ischemia. However, the neuroprotective mechanism of hG-CSF remains unclear. The present study...Recombinant human granulocyte-colony stimulating factor (hG-CSF) has been shown to protect the nervous system after brain ischemia. However, the neuroprotective mechanism of hG-CSF remains unclear. The present study established a rat model of cerebral ischemia/reperfusion and subcutaneously injected recombinant hG-CSF after reperfusion for 2 hours. Cerebral cortical protein was extracted following 14 days of reperfusion and subjected to two-dimensional electrophoresis. In brain ischemic rats, 56 different protein spots were screened, including 17 that were upregulated and 17 that were downregulated, compared with the sham-surgery group. Matrix assisted laser desorption ionization/time of flight mass spectrometry was used to determine peptide mass fingerprinting. Following a National Center for Biotechnology Information database search and confirmation with the Swiss-Prot database, 19 spots were identified as known proteins. Following hG-CSF treatment, 35 different protein spots were found, including 16 that were downregulated and 19 that were upregulated. Six were known proteins, including dihydropyrimidinase-associated protein 2, glial fibrillary acidic protein, endomucin, Rho GDP dissociation inhibitor, Rab GDP dissociation inhibitor and guanine-nucleotide-binding protein. Results indicate that hG-CSF is involved in neuroprotection after brain ischemia, possibly by regulating the expression of various neural regeneration-associated proteins at the subacute stage.展开更多
AIM:To introduce Granulocyte-colony stimulating factor (G-CSF) as a new therapeutic modality for schistosomiasis through stem cell mobilization,immunomodulation or fibrosis remodeling. METHODS:In this study,a 5 d cour...AIM:To introduce Granulocyte-colony stimulating factor (G-CSF) as a new therapeutic modality for schistosomiasis through stem cell mobilization,immunomodulation or fibrosis remodeling. METHODS:In this study,a 5 d course of human recombinant G-CSF (100 μg/kg sc) was applied to Schis-tosoma mansoni-infected mice at different stages of disease (5 d before infection as well as 3,5 and 7 wk post-infection). The animals were sacrificed at 10 d as well as 4,6 and 8 wk post infection. Mice were examined for:(1) Total leukocyte count which is an accepted surrogate marker for the stem cell mobilization into the circulation; (2) Egg count in intestine and liver tissue to assess the parasitic load; and (3) Histopathological changes in Hx/E and Masson trichrome stained sections as well as collagen content in Sirius redstained liver sections to determine the severity of liver fibrosis. RESULTS:Mice developed leukocytosis. The egg load and the number of granulomas were not affected by the G-CSF treatment but there was an obvious change in the composition of granulomas towards an increased cellularity. Moreover,fibrosis was significantly decreased in treated groups compared to untreated animals (collagen content either preinfection or at 3 and 5 wk post infection:5.8 ± 0.5,4.7 ± 0.5,4.0 ± 0.7 vs 8.2 ± 0.9; P ≤ 0.01). CONCLUSION:Although G-CSF did not cause direct elimination of the parasite,it enhanced granulomatous reaction and reduced the fibrosis. Further investigation of the underlying mechanisms of these two actions is warranted.展开更多
The G-CSF is used as a therapeutic drug of the febrile neutropenia in lung cancer chemotherapy, however, there were few reports that showed the effects of combination effects of G-CSF and anticancer drugs against lung...The G-CSF is used as a therapeutic drug of the febrile neutropenia in lung cancer chemotherapy, however, there were few reports that showed the effects of combination effects of G-CSF and anticancer drugs against lung cancer. In the present study, we investigated the effects of G-CSF and the combination effects of G-CSF and cisplatin on lung cancer growth. We investigated the effect of G-CSF against the LL-2 and KLN-205 cells by MTT assay and tried to detect the G-CSF receptor by RT-PCR. Next, to analyze the G-CSF effects in vivo, we transplanted the LL-2 into C57BL/6 mice, intraperitoneally administered G-CSF (30 micro/kg/day) with or without cisplatin (5 mg/kg), measured the tumor size and analyzed pathologically by HE and immunostaining. In vitro analyses, G-CSF showed no effects in LL-2 and KLN-205 cells, and RT-PCR revealed no G-CSF receptor mRNA. In vivo analyses, G-CSF alone did not significantly suppress tumor growth. However, concurrent G-CSF administration with cisplatin significantly enhanced the tumor suppressing effect of cisplatin in early stage of tumor growth. The analysis data of vWF immunostaining indicated that the neovascularization in the peripheral region of the tumors was more enhanced in G-CSF treatment mice. ELISA assay revealed that G-CSF did not influence the serum concentration of TNF-alpha and IL-12 in tumor-bearing mice. This study suggests that concurrent (combination) administration of cisplatin with G-CSF is a safe and effective method for enhancing anticancer effects and reducing chemotherapeutic agent-induced myelosuppression.展开更多
Paired associative stimulation is a relatively new non-invasive brain stimulation technique that combines transcranial magnetic stimulation and peripheral nerve stimulation. The effects of paired associative stimulati...Paired associative stimulation is a relatively new non-invasive brain stimulation technique that combines transcranial magnetic stimulation and peripheral nerve stimulation. The effects of paired associative stimulation on the excitability of the cerebral cortex can vary according to the time interval between the transcranial magnetic stimulation and peripheral nerve stimulation. We established a model of cerebral ischemia in rats via transient middle cerebral artery occlusion. We administered paired associative stimulation with a frequency of 0.05 Hz 90 times over 4 weeks. We then evaluated spatial learning and memory using the Morris water maze. Changes in the cerebral ultra-structure and synaptic plasticity were assessed via transmission electron microscopy and a 64-channel multi-electrode array. We measured mRNA and protein expression levels of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 in the hippocampus using a real-time polymerase chain reaction and western blot assay. Paired associative stimulation treatment significantly improved learning and memory in rats subjected to cerebral ischemia. The ultra-structures of synapses in the CA1 area of the hippocampus in rats subjected to cerebral ischemia were restored by paired associative stimulation. Long-term potentiation at synapses in the CA3 and CA1 regions of the hippocampus was enhanced as well. The protein and mRNA expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 increased after paired associative stimulation treatment. These data indicate that paired associative stimulation can protect cog-nition after cerebral ischemia. The observed effect may be mediated by increases in the mRNA and protein expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1, and by enhanced synaptic plasticity in the CA1 area of the hippocampus. The animal experiments were approved by the Animal Ethics Committee of Tongji Medical College, Huazhong University of Science & Technology, China(approval No. TJ-A20151102) on July 11, 2015.展开更多
Paired associative stimulation has been used in stroke patients as an innovative recovery treatment.However,the mechanisms underlying the therapeutic effectiveness of paired associative stimulation on neurological fun...Paired associative stimulation has been used in stroke patients as an innovative recovery treatment.However,the mechanisms underlying the therapeutic effectiveness of paired associative stimulation on neurological function remain unclear.In this study,rats were randomly divided into middle cerebral occlusion model(MCAO)and paired associated magnetic stimulation(PAMS)groups.The MCAO rat model was produced by middle cerebral artery embolization.The PAMS group received PAMS on days 3 to 20 post MCAO.The MCAO group received sham stimulation,three times every week.Within 18 days after ischemia,rats were subjected to behavioral experiments—the foot-fault test,the balance beam walking test,and the ladder walking test.Balance ability was improved on days 15 and 17,and the footfault rate was less in their affected limb on day 15 in the PAMS group compared with the MCAO group.Western blot assay showed that the expression levels of brain derived neurotrophic factor,glutamate receptor 2/3,postsynaptic density protein 95 and synapsin-1 were significantly increased in the PAMS group compared with the MCAO group in the ipsilateral sensorimotor cortex on day 21.Resting-state functional magnetic resonance imaging revealed that regional brain activities in the sensorimotor cortex were increased in the ipsilateral hemisphere,but decreased in the contralateral hemisphere on day 20.By finite element simulation,the electric field distribution showed a higher intensity,of approximately 0.4 A/m^2,in the ischemic cortex compared with the contralateral cortex in the template.Together,our findings show that PAMS upregulates neuroplasticity-related proteins,increases regional brain activity,and promotes functional recovery in the affected sensorimotor cortex in the rat MCAO model.The experiments were approved by the Institutional Animal Care and Use Committee of Fudan University,China(approval No.201802173 S)on March 3,2018.展开更多
Traumatic brain injury(TBI) can result in poor functional outcomes and death, and overall outcomes are varied. Growth factors, such as angiopoietin-1(Ang-1), vascular endothelial growth factor(VEGF), and granulo...Traumatic brain injury(TBI) can result in poor functional outcomes and death, and overall outcomes are varied. Growth factors, such as angiopoietin-1(Ang-1), vascular endothelial growth factor(VEGF), and granulocyte-colony stimulating factor(G-CSF), play important roles in the neurological functions. This study investigated the relationship between serum growth factor levels and long-term outcomes after TBI. Blood samples from 55 patients were collected at 1, 3 and 7 days after TBI. Blood samples from 39 healthy controls were collected as a control group. Serum Ang-1, G-CSF, and VEGF levels were measured using ELISA. Patients were monitored for 3 months using the Glasgow Outcome Scale-Extended(GOSE). Patients having a GOSE score of 〉 5 at 3 months were categorized as a good outcome, and patients with a GOSE score of 1-5 were categorized as a bad outcome. Our data demonstrated that TBI patients showed significantly increased growth factor levels within 7 days compared with healthy controls. Serum levels of Ang-1 at 1 and 7 days and G-CSF levels at 7 days were significantly higher in patients with good outcomes than in patients with poor outcomes. VEGF levels at 7 days were remarkably higher in patients with poor outcomes than in patients with good outcomes. Receiver operating characteristic analysis showed that the best cut-off points of serum growth factor levels at 7 days to predict functional outcome were 1,333 pg/mL for VEGF, 447.2 pg/mL for G-CSF, and 90.6 ng/mL for Ang-1. These data suggest that patients with elevated levels of serum Ang-1, G-CSF, and decreased VEGF levels had a better prognosis in the acute phase of TBI(within 7 days). This study was registered with the Chinese Clinical Trial Registry(registration number: ChiCTR1800018251) on September 7, 2018.展开更多
Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic ...Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood.In this study,we established rat models of moderate traumatic brain injury using Feeney's weight-dropping method and treated them using rTMS.To help determine the mechanism of action,we measured levels of seve ral impo rtant brain activity-related proteins and their mRNA.On the injured side of the brain,we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor,tropomyosin receptor kinase B,N-methyl-D-aspartic acid receptor 1,and phosphorylated cAMP response element binding protein,which are closely associated with the occurrence of long-term potentiation.rTMS also partially reve rsed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure.These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury.展开更多
Microglia are the brain’s primary innate immune cells,and they are activated and affect pro-inflammatory phenotype or regulatory phenotype after ischemic stroke.Vagus nerve stimulation was shown to activate microglia...Microglia are the brain’s primary innate immune cells,and they are activated and affect pro-inflammatory phenotype or regulatory phenotype after ischemic stroke.Vagus nerve stimulation was shown to activate microglial phenotypic changes and exhibit neuroprotective effects in ischemia/reperfusion injury.In this study,we established rat models of ischemic stroke by occlusion of the middle cerebral artery and performed vagus nerve stimulation 30 minutes after modeling.We found that vagus nerve stimulation caused a shift from a pro-inflammatory phenotype to a regulatory phenotype in microglia in the ischemic penumbra.Vagus nerve stimulation decreased the levels of pro-inflammatory phenotype markers inducible nitric oxide synthase and tumor necrosis factorαand increased the expression of regulatory phenotype markers arginase 1 and transforming growth factorβthrough activatingα7 nicotinic acetylcholine receptor expression.Additionally,α7 nicotinic acetylcholine receptor blockade reduced the inhibition of Toll-like receptor 4/nuclear factor kappa-B pathwayassociated proteins,including Toll-like receptor 4,myeloid differentiation factor 88,I kappa B alpha,and phosphorylated-I kappa B alpha,and also weakened the neuroprotective effects of vagus nerve stimulation in ischemic stroke.Vagus nerve stimulation inhibited Toll-like receptor 4/nuclear factor kappa-B expression through activatingα7 nicotinic acetylcholine receptor and regulated microglial polarization after ischemic stroke,thereby playing a role in the treatment of ischemic stroke.Findings from this study confirm the mechanism underlying vagus nerve stimulation against ischemic stroke.展开更多
BACKGROUND Human Wharton’s jelly-derived mesenchymal stromal/stem cells(hWJ-MSCs)have gained considerable attention in their applications in cell-based therapy due to several advantages offered by them.Recently,we re...BACKGROUND Human Wharton’s jelly-derived mesenchymal stromal/stem cells(hWJ-MSCs)have gained considerable attention in their applications in cell-based therapy due to several advantages offered by them.Recently,we reported that hWJ-MSCs and their conditioned medium have significant therapeutic radioprotective potential.This finding raised an obvious question to identify unique features of hWJ-MSCs over other sources of stem cells for a better understanding of its radioprotective mechanism.AIM To understand the radioprotective mechanism of soluble factors secreted by hWJMSCs and identification of their unique genes.METHODS Propidium iodide staining,endogenous spleen colony-forming assay,and survival study were carried out for radioprotection studies.Homeostasis-driven proliferation assay was performed for in vivo lymphocyte proliferation.Analysis of RNAseq data was performed to find the unique genes of WJ-MSCs by comparing them with bone marrow mesenchymal stem cells,embryonic stem cells,and human fibroblasts.Gene enrichment analysis and protein-protein interaction network were used for pathway analysis.RESULTS Co-culture of irradiated murine splenic lymphocytes with WJ-MSCs offered significant radioprotection to lymphocytes.WJ-MSC transplantation increased the homeostasis-driven proliferation of the lymphocytes.Neutralization of WJ-MSC conditioned medium with granulocyte-colony stimulating factor antibody abolished therapeutic radioprotection.Transcriptome analysis showed that WJ-MSCs share several common genes with bone marrow MSCs and embryonic stem cells and express high levels of unique genes such as interleukin(IL)1-α,IL1-β,IL-6,CXCL3,CXCL5,CXCL8,CXCL2,CCL2,FLT-1,and IL-33.It was also observed that WJ-MSCs preferentially modulate several cellular pathways and processes that handle the repair and regeneration of damaged tissues compared to stem cells from other sources.Cytokine-based network analysis showed that most of the radiosensitive tissues have a more complex network for the elevated cytokines.CONCLUSION Systemic infusion of WJ-MSC conditioned media will have significant potential for treating accidental radiation exposed victims。展开更多
According to the definition of cytokine, the direction of signaling should be from cytokine to receptor. The counter receptor was presented. Membrane bound macrophage colony-stimulating factor (m-M-CSF) and its recept...According to the definition of cytokine, the direction of signaling should be from cytokine to receptor. The counter receptor was presented. Membrane bound macrophage colony-stimulating factor (m-M-CSF) and its receptor (M-CSF-R) were shown in human leukemic cell line J6-1 as autojuxtacrine mechanism. Soluble M-CSF receptor (sM-CSF-R), which was isolated from J6-1 cells membrane, was added into J6-1 cell culture. It was observed inhibition of J6-1 cell proliferation, decreasing of mitosis index and ratio of multinuclear cells, enlargement of cell diameter and volume, down regulation of numerous surface antigens. Dramatic change of intracellular pH was shown between several min to 20 min after treatment of sM-CSF-R. It suggested that some information was transmitted via m-M-CSF from sM-CSF-R. This counter signaling was not influenced by saccharification of m-M-CSF.展开更多
Colony-stimulating factor-1 (CSF-1), which is necessary for cell proliferation and differentiation, regulates both immediate and delayed early responses throughout G1 phase. The binding of CSF-1 to its receptor (CSF-1...Colony-stimulating factor-1 (CSF-1), which is necessary for cell proliferation and differentiation, regulates both immediate and delayed early responses throughout G1 phase. The binding of CSF-1 to its receptor (CSF-1R) triggers phosphorylation of the receptor and its intrinsic tyrosine kinase. The activated receptor binds directly to cytoplasmic effector proteins, which induce multiple-signal transduction pathways. CSF-1 can induce the c-myc gene expression via Ras and Ets-related proteins. The expression of c-fos/jun family genes is also targeted following the activation of Ras. CSF-1R activates STAT1 and STAT3 to participate in signaling, but JAKs do not appear to contribute to signaling by CSF-1R. CSF-1R activates PI3-kinase, and PI3-kinase can interact with downstream proteins by the MAPKK-related pathway independent of Ras/Raf. PC-PLC can enforce signaling in response to CSF-1. Furthermore, the turnover and dephosphorylation by the phosphatase SHPTP1 of CSF-1R are the major mechanism in the negative regulation of signaling by CSF-1R.展开更多
目的探讨微生态制剂联合浙贝黄芩汤对急性淋巴细胞白血病(ALL)大剂量化疗后患者粒细胞集落刺激因子受体(G-CSFR)、粒单系集落形成单位(CFU-GM)、肠道菌群及红系爆式集落形成单位(BFU-E)的影响。方法选取延安大学附属医院2019年6月至2022...目的探讨微生态制剂联合浙贝黄芩汤对急性淋巴细胞白血病(ALL)大剂量化疗后患者粒细胞集落刺激因子受体(G-CSFR)、粒单系集落形成单位(CFU-GM)、肠道菌群及红系爆式集落形成单位(BFU-E)的影响。方法选取延安大学附属医院2019年6月至2022年12月收治的ALL患者130例作为研究对象,根据治疗方法将患者分为A组、B组、C组,3组患者均接受大剂量化疗,化疗结束48 h后A组患者实施常规治疗,B组患者单纯浙贝黄芩汤治疗,C组给予微生态制剂联合浙贝黄芩汤治疗,治疗12 d后,对3组患者G-CSFR、CFU-GM、BFU-E表达情况及血细胞数量进行检测。结果治疗后,C组血红蛋白、白细胞、血小板[(79±6)g/L、(3.8±0.4)×10^(9)/L、(66.4±3.6)×10^(9)/L]与A组[(59±7)g/L、(3.2±0.4)×10^(9)/L、(52.6±2.8)×10^(9)/L]、B组[(61±7)g/L、(3.1±0.3)×10^(9)/L、(52.8±2.6)×10^(9)/L]对比,差异有统计学意义(P<0.05)。C组G-CSFR(5.35±0.16)pg/ml和白细胞介素-11受体(IL-11R)(6.38±0.54)μg/kg水平均高于A组[(2.23±0.13)pg/ml和(1.49±0.24)μg/kg]和B组[(2.31±0.16)pg/ml和(2.31±0.49)μg/kg]差异有统计学意义(P<0.05)。治疗后,C组患者7 d CFU-GM(18.5±6.0)个和14 d BFU-E(83.5±7.5)个高于A组[7 d CFU-GM(9.5±2.0)个和14 d BFU-E(59.5±6.5)个]和B组[7 d CFU-GM(12.0±6.5)个和14 d BFU-E(63.5±5.0)个],差异有统计学意义(P<0.05)。7 d后,C组双歧杆菌(12.56±3.25)lgCFU/g、乳酸杆菌(13.56±2.58)lgCFU/g、肠杆菌(5.12±1.45)lgCFU/g、肠球菌(5.14±0.58)lgCFU/g高于A组[(9.26±1.03)lg CFU/g、(8.65±0.84)lg CFU/g、(8.08±0.64)lgCFU/g、(8.15±0.46)lgCFU/g]和B组[(11.35±1.36)lg CFU/g、(12.43±1.14)lgCFU/g、(6.49±0.55)lgCFU/g、(6.66±0.43)lgCFU/g],差异有统计学意义(P<0.05)。结论微生态制剂联合浙贝黄芩汤治疗可以有效提高ALL大剂量化疗后患者的G-CSFR、CFU-GM、BFU-E水平,可能更好地改善化疗引起的患者骨髓抑制情况,改善肠道菌群,具有临床研究价值。展开更多
文摘Objective: To verify the antigen association of MAF-J6-1 receptor with M-CSFR and to further study the role of M-CSF and its receptor mediated juxtacrine in promoting leukemic cell proliferation. Methods: Monoclonal antibody (McAb) of MAF-J6-1R RE2 and polyclonal antibody (PolyAb) of rhM-CSFR were prepared. The specificity of McAb RE2 to M-CSFR was confirmed by indirect ELISA, cross-neutralizing assay with J6-1 cell colony formation and neutralization test by ELISA. Results: the reactive activity of purified RE2 to M-CSFR was over 1: 16000. The inhibitory activity of M-CSFR and MAF-J6-1R could be blocked by RE2 and anti-M-CSFR antibody. The reactivity of RE2 to M-CSFR could be reduced by M-CSFR. Conclusion: The specificity of RE2 to M-CSFR was confirmed and the antigen association of MAF-J6-1R with M-CSFR was proved. It suggests that M-CSF and its receptor mediated auto-juxtacrine stimulation could be an operative mechanism in either leukemia or nonhematological malignancies.
文摘AIM: To investigate the effects of granulocyte-colony stimulating factor (G-CSF) on peritoneal defense mechanisms and bacterial translocation after systemic 5-Fluorouracil (5-FU) administration. METHODS: Thirty Wistar albino rats were divided into three groups; the control, 5-FU and 5-FU + G-CSF groups. We measured bactericidal activity of the peritoneal fluid, phagocytic activity of polymorphonuclear leucocytes in the peritoneal fluid, total peritoneal cell counts and cell types of peritoneal washing fluid. Bacterial translocation was quantified by mesenteric lymph node, liver and spleen tissue cultures. RESULTS: Systemic 5-FU reduced total peritoneal cell counts, neutrophUs and macrophage numbers. It also altered bactericidal activity of the peritoneal fluid and phagocytic activity of polymorphonuclear leucocytes in the peritoneal fluid. 5-FU also caused significant increase in frequencies of bacterial translocation at the liver and mesenteric lymph nodes. G-CSF decreased bacterial translocation, it significantly enhanced bactericidal activity of the peritoneal fluid and phagocytic activity of polymorphonuclear leucocytes in the peritoneal fluid. It also increased total peritoneal cell counts, neutrophils and macrophage numbers. CONCLUSION: Systemic 5-FU administration caused bacterial translocation, decreased the bactericidal activity of peritoneal fluid and phagocytic activity of polymorphonuclear leucocytes in the peritoneal fluid. G-CSF increased both bactericidal activity of the peritoneal fluid and phagocytic activity of polymorphonuclear leucocytes in the peritoneal fluid, and prevented the bacterial translocation. We conclude that intraperitoneal GCSF administration protects the effects of systemic 5-FU on peritoneal defense mechanisms.
基金The authors would like to acknowledge the support from the National Natural Science Foundation of China(Project number 20299035,20035010,20275039)Pilot of Knowledge Innovation Program of the Chinese Academy of Science(KSCX 2-3-02-02)on the above work.
文摘The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate / κ-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with G-CSF and the complex was detected. The binding constant and stoichiometry were determined to be 1.2×106 (mol/L)-1 and 3:1, respectively. However, the interaction between κ-carrageenan oligosaccharide and G-CSF was not found.
基金Foundation item: This work was supported by '863' High Technology Grant of China (No. 102-11-01-03).
文摘Objective: To study the potential role of cellular macrophage colony-stimulating factor (cM-CSF) and cellular macrophage colony-stimulating factor receptor (cM-CSF-R) with breast cancer and hepatoma and search the way for clinical application. Methods: Frozen surgical specimens from 48 breast cancer patients, including 29 cases of histological grade II and 19 eases of grade III, and 16 hepatoma patients were investigated by Avidin Biotin Complex (ABC) immunohistochemical assay with anti-M-CSF monoclonal antibody (Mab) and anti-M-CSF-R Mab. Pathohistological examination was performed as well. Results: cM-CSF and cM-CSF-R were detected in tested specimens. The expression levels of cM-CSF and cM-CSF-R in grade III group were higher than in grade II group and more higher than control group hyperplasia of breast. Hepatoma tissues also showed higher expression level of cM-CSF and cM-CSF-R than normal adult and fetal liver. Conclusion: Breast cancer and hepatoma tissues presented higher expression levels of cM-CSF and cM-CSF-R than control and expression level might be related with tumor’s process.
文摘Objective: To investigate the potential role of macrophage colony-stimulating factor (M-CSF) and macrophage colony-stimulating factor receptor (M-CSF-R) on the growth of human hepatoma cells. Methods: Specimens of different origin, including tissues of human hepatocellular carcinoma (HCC), human fetal liver (FL) and normal liver (NL), the hepatoma cell lines, as well as the peripheral blood mononuclear cells (PBMC) from patients with HCC or liver metastatic tumor (LMT), were used to detect the expression levels of M-CSF and M-CSF-R by ABC immunohistochemistry staining and reverse transcription polymerase chain reaction methods the expression levels of M-CSF and M-CSF-R. Influence of monoclonal antibody against M-CSF (B5) or M-CSF-R (RE2) on proliferation ability of hepatoma cell linesin vitro was also studied. Results: The results showed that hepatoma tissues produced elevated levels of both M-CSF and M-CSF-R compared with those of fetal liver (P<0.001). The M-CSF/M-CSF-R expression levels of PBMC from hepatoma patients were higher than those of LMT patients (P<0.01,P<0.05) and the normal people (P<0.001). The hepatoma cell lines showed strong positive for M-CSF and M-CSF-R production. Both B5 and RE2 displayed a dose-dependent inhibitory effect on the growth and proliferation of hepatoma cells. Conclusion: The study indicates a co-expression model for M-CSF-R in hepatoma cells, suggesting an involvement of M-CSF/M-CSF-R in growth signaling of those malignant cells. The M-CSF/M-CSF-R seems to function through an autonomy mechanism in human hepatoma.
基金Foundation items: This project was supported by the Program for the National Natural Science Foundation of China (31372555), Zhejiang Provincial Natural Science Foundation of China (LZ13C190001), Scientific Research Foundation of Graduate School of Ningbo University (G15063), and KC Wong Magna Fund in Ningbo University
文摘Colony-stimulating factor 1 receptor (CSF-1R) is an important regulator of monocytes/macrophages (MO/MФ). Although several CSF-1R genes have been identified in teleosts, the precise role of CSF- 1R in ayu (Plecoglossus altivelis) remains unclear. In this study, we characterized the CSF-1R homologue from P. altivelis, and named it PaCSF-1R. Multiple sequence alignment and phylogenetic tree analysis showed that PaCSF-1R was most closely related to that of Japanese ricefish (Oryzias latipes). Tissue distribution and expression analysis showed that the PaCSF-1R transcript was mainly expressed in the head kidney-derived MO/MФ, spleen, and head kidney, and its expression was significantly altered in various tissues upon Vibrio anguillarum infection. After PaCSF-1R neutralization for 48 h, the phagocytic activity of MO/MФ was significantly decreased, suggesting that PaCSF-1R plays a role in regulating the phagocytic function of ayu MO/M(P.
基金National "863" High Technology Program of China ( 102-11-01-03).
文摘Objective: To investigate the serum levels of soluble macrophage colony-stimulating factor receptor (M-CSFsR) in normal subjects and patients with hematological diseases and its clinical implications in hematological diseases. Methods: The concentration of M-CSFsR was determined by ELISA. The serum M-CSFsR was identified and characterized by immunoprecipitation and Western blotting. Results: The mean serum level of M-CSFsR of 123 normal individuals was 0.48 ng/ml ± 0.41 ng/ml. Immunoprecipitation and Western blotting assay revealed a ~ 90kD band of serum M-CSFsR. The mean serum M-CSFsR level of 60 patients with acute lymphoblastic leukemia (ALL), 36 patients with acute myeloblastic leukemia (AML), 13 patients with myelodysplastic syndrome (MDS) and 42 patients with aplastic anemia (AA) .were 0.22 ng/ml±0.23 ng/ml, 0.17 ng/ml±0.16 ng/ml, 0.19 ng/ml±0.16 ng/ml and 0.23 ng/ml±0.21 ng/ml, respectively, which were significantly lower than that of normal subjects (P=0.002 ,P<0.0001,P<0.0001 andP<0.0001). The mean serum M-CSFsR level of 51 idiopathic thrombocytopenic purpura (ITP) patients was significantly higher than that of normal subjects (2.05 ng/ml±2.75 ng/ml,P<0.0001). Conclusion: The serum M-CSFsR levels of patients with ALL, AML, MDS and AA were significantly lower, while the level of patients with ITP was significantly higher than that of normal individuals. Patients with severe ITP (platelet count<30×l09/L) had the highest M-CSFsR level. It suggested that the abnormal levels of serum M-CSFsR may associate with some hematological diseases and may contribute to the pathological process.
文摘Recombinant human granulocyte-colony stimulating factor (hG-CSF) has been shown to protect the nervous system after brain ischemia. However, the neuroprotective mechanism of hG-CSF remains unclear. The present study established a rat model of cerebral ischemia/reperfusion and subcutaneously injected recombinant hG-CSF after reperfusion for 2 hours. Cerebral cortical protein was extracted following 14 days of reperfusion and subjected to two-dimensional electrophoresis. In brain ischemic rats, 56 different protein spots were screened, including 17 that were upregulated and 17 that were downregulated, compared with the sham-surgery group. Matrix assisted laser desorption ionization/time of flight mass spectrometry was used to determine peptide mass fingerprinting. Following a National Center for Biotechnology Information database search and confirmation with the Swiss-Prot database, 19 spots were identified as known proteins. Following hG-CSF treatment, 35 different protein spots were found, including 16 that were downregulated and 19 that were upregulated. Six were known proteins, including dihydropyrimidinase-associated protein 2, glial fibrillary acidic protein, endomucin, Rho GDP dissociation inhibitor, Rab GDP dissociation inhibitor and guanine-nucleotide-binding protein. Results indicate that hG-CSF is involved in neuroprotection after brain ischemia, possibly by regulating the expression of various neural regeneration-associated proteins at the subacute stage.
文摘AIM:To introduce Granulocyte-colony stimulating factor (G-CSF) as a new therapeutic modality for schistosomiasis through stem cell mobilization,immunomodulation or fibrosis remodeling. METHODS:In this study,a 5 d course of human recombinant G-CSF (100 μg/kg sc) was applied to Schis-tosoma mansoni-infected mice at different stages of disease (5 d before infection as well as 3,5 and 7 wk post-infection). The animals were sacrificed at 10 d as well as 4,6 and 8 wk post infection. Mice were examined for:(1) Total leukocyte count which is an accepted surrogate marker for the stem cell mobilization into the circulation; (2) Egg count in intestine and liver tissue to assess the parasitic load; and (3) Histopathological changes in Hx/E and Masson trichrome stained sections as well as collagen content in Sirius redstained liver sections to determine the severity of liver fibrosis. RESULTS:Mice developed leukocytosis. The egg load and the number of granulomas were not affected by the G-CSF treatment but there was an obvious change in the composition of granulomas towards an increased cellularity. Moreover,fibrosis was significantly decreased in treated groups compared to untreated animals (collagen content either preinfection or at 3 and 5 wk post infection:5.8 ± 0.5,4.7 ± 0.5,4.0 ± 0.7 vs 8.2 ± 0.9; P ≤ 0.01). CONCLUSION:Although G-CSF did not cause direct elimination of the parasite,it enhanced granulomatous reaction and reduced the fibrosis. Further investigation of the underlying mechanisms of these two actions is warranted.
文摘The G-CSF is used as a therapeutic drug of the febrile neutropenia in lung cancer chemotherapy, however, there were few reports that showed the effects of combination effects of G-CSF and anticancer drugs against lung cancer. In the present study, we investigated the effects of G-CSF and the combination effects of G-CSF and cisplatin on lung cancer growth. We investigated the effect of G-CSF against the LL-2 and KLN-205 cells by MTT assay and tried to detect the G-CSF receptor by RT-PCR. Next, to analyze the G-CSF effects in vivo, we transplanted the LL-2 into C57BL/6 mice, intraperitoneally administered G-CSF (30 micro/kg/day) with or without cisplatin (5 mg/kg), measured the tumor size and analyzed pathologically by HE and immunostaining. In vitro analyses, G-CSF showed no effects in LL-2 and KLN-205 cells, and RT-PCR revealed no G-CSF receptor mRNA. In vivo analyses, G-CSF alone did not significantly suppress tumor growth. However, concurrent G-CSF administration with cisplatin significantly enhanced the tumor suppressing effect of cisplatin in early stage of tumor growth. The analysis data of vWF immunostaining indicated that the neovascularization in the peripheral region of the tumors was more enhanced in G-CSF treatment mice. ELISA assay revealed that G-CSF did not influence the serum concentration of TNF-alpha and IL-12 in tumor-bearing mice. This study suggests that concurrent (combination) administration of cisplatin with G-CSF is a safe and effective method for enhancing anticancer effects and reducing chemotherapeutic agent-induced myelosuppression.
基金supported by the National Natural Science Foundation of China,No.81272156(to TCG)
文摘Paired associative stimulation is a relatively new non-invasive brain stimulation technique that combines transcranial magnetic stimulation and peripheral nerve stimulation. The effects of paired associative stimulation on the excitability of the cerebral cortex can vary according to the time interval between the transcranial magnetic stimulation and peripheral nerve stimulation. We established a model of cerebral ischemia in rats via transient middle cerebral artery occlusion. We administered paired associative stimulation with a frequency of 0.05 Hz 90 times over 4 weeks. We then evaluated spatial learning and memory using the Morris water maze. Changes in the cerebral ultra-structure and synaptic plasticity were assessed via transmission electron microscopy and a 64-channel multi-electrode array. We measured mRNA and protein expression levels of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 in the hippocampus using a real-time polymerase chain reaction and western blot assay. Paired associative stimulation treatment significantly improved learning and memory in rats subjected to cerebral ischemia. The ultra-structures of synapses in the CA1 area of the hippocampus in rats subjected to cerebral ischemia were restored by paired associative stimulation. Long-term potentiation at synapses in the CA3 and CA1 regions of the hippocampus was enhanced as well. The protein and mRNA expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 increased after paired associative stimulation treatment. These data indicate that paired associative stimulation can protect cog-nition after cerebral ischemia. The observed effect may be mediated by increases in the mRNA and protein expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1, and by enhanced synaptic plasticity in the CA1 area of the hippocampus. The animal experiments were approved by the Animal Ethics Committee of Tongji Medical College, Huazhong University of Science & Technology, China(approval No. TJ-A20151102) on July 11, 2015.
基金supported by the National Natural Science Foundation of China,Nos.81974358,81772453(to DSX)。
文摘Paired associative stimulation has been used in stroke patients as an innovative recovery treatment.However,the mechanisms underlying the therapeutic effectiveness of paired associative stimulation on neurological function remain unclear.In this study,rats were randomly divided into middle cerebral occlusion model(MCAO)and paired associated magnetic stimulation(PAMS)groups.The MCAO rat model was produced by middle cerebral artery embolization.The PAMS group received PAMS on days 3 to 20 post MCAO.The MCAO group received sham stimulation,three times every week.Within 18 days after ischemia,rats were subjected to behavioral experiments—the foot-fault test,the balance beam walking test,and the ladder walking test.Balance ability was improved on days 15 and 17,and the footfault rate was less in their affected limb on day 15 in the PAMS group compared with the MCAO group.Western blot assay showed that the expression levels of brain derived neurotrophic factor,glutamate receptor 2/3,postsynaptic density protein 95 and synapsin-1 were significantly increased in the PAMS group compared with the MCAO group in the ipsilateral sensorimotor cortex on day 21.Resting-state functional magnetic resonance imaging revealed that regional brain activities in the sensorimotor cortex were increased in the ipsilateral hemisphere,but decreased in the contralateral hemisphere on day 20.By finite element simulation,the electric field distribution showed a higher intensity,of approximately 0.4 A/m^2,in the ischemic cortex compared with the contralateral cortex in the template.Together,our findings show that PAMS upregulates neuroplasticity-related proteins,increases regional brain activity,and promotes functional recovery in the affected sensorimotor cortex in the rat MCAO model.The experiments were approved by the Institutional Animal Care and Use Committee of Fudan University,China(approval No.201802173 S)on March 3,2018.
基金supported by the National Natural Science Foundation of China,No.81330029(to JNZ),81501057(to YT)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education in China,No.2016YD02(to YW)the Technology Program Fund of Tianjin Health and Family Planning Commission for the Key Field of Traditional Chinese Medicine,No.2018001(to ZGW)
文摘Traumatic brain injury(TBI) can result in poor functional outcomes and death, and overall outcomes are varied. Growth factors, such as angiopoietin-1(Ang-1), vascular endothelial growth factor(VEGF), and granulocyte-colony stimulating factor(G-CSF), play important roles in the neurological functions. This study investigated the relationship between serum growth factor levels and long-term outcomes after TBI. Blood samples from 55 patients were collected at 1, 3 and 7 days after TBI. Blood samples from 39 healthy controls were collected as a control group. Serum Ang-1, G-CSF, and VEGF levels were measured using ELISA. Patients were monitored for 3 months using the Glasgow Outcome Scale-Extended(GOSE). Patients having a GOSE score of 〉 5 at 3 months were categorized as a good outcome, and patients with a GOSE score of 1-5 were categorized as a bad outcome. Our data demonstrated that TBI patients showed significantly increased growth factor levels within 7 days compared with healthy controls. Serum levels of Ang-1 at 1 and 7 days and G-CSF levels at 7 days were significantly higher in patients with good outcomes than in patients with poor outcomes. VEGF levels at 7 days were remarkably higher in patients with poor outcomes than in patients with good outcomes. Receiver operating characteristic analysis showed that the best cut-off points of serum growth factor levels at 7 days to predict functional outcome were 1,333 pg/mL for VEGF, 447.2 pg/mL for G-CSF, and 90.6 ng/mL for Ang-1. These data suggest that patients with elevated levels of serum Ang-1, G-CSF, and decreased VEGF levels had a better prognosis in the acute phase of TBI(within 7 days). This study was registered with the Chinese Clinical Trial Registry(registration number: ChiCTR1800018251) on September 7, 2018.
基金supported by the President Foundation of Nanfang Hospital,Southern Medical University,No.2016Z003(50107021)(to JZF).
文摘Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood.In this study,we established rat models of moderate traumatic brain injury using Feeney's weight-dropping method and treated them using rTMS.To help determine the mechanism of action,we measured levels of seve ral impo rtant brain activity-related proteins and their mRNA.On the injured side of the brain,we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor,tropomyosin receptor kinase B,N-methyl-D-aspartic acid receptor 1,and phosphorylated cAMP response element binding protein,which are closely associated with the occurrence of long-term potentiation.rTMS also partially reve rsed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure.These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury.
基金supported by the Natural Science Foundation of Chongqing,No.cstc2019jcyj-msxm X0026the Medical Scientific Research Projects Foundation of Chongqing,No.2021ZY023818the Natural Science Foundation of Chongqing,No.cstc2018jcyj AX0180(all to GWJ)。
文摘Microglia are the brain’s primary innate immune cells,and they are activated and affect pro-inflammatory phenotype or regulatory phenotype after ischemic stroke.Vagus nerve stimulation was shown to activate microglial phenotypic changes and exhibit neuroprotective effects in ischemia/reperfusion injury.In this study,we established rat models of ischemic stroke by occlusion of the middle cerebral artery and performed vagus nerve stimulation 30 minutes after modeling.We found that vagus nerve stimulation caused a shift from a pro-inflammatory phenotype to a regulatory phenotype in microglia in the ischemic penumbra.Vagus nerve stimulation decreased the levels of pro-inflammatory phenotype markers inducible nitric oxide synthase and tumor necrosis factorαand increased the expression of regulatory phenotype markers arginase 1 and transforming growth factorβthrough activatingα7 nicotinic acetylcholine receptor expression.Additionally,α7 nicotinic acetylcholine receptor blockade reduced the inhibition of Toll-like receptor 4/nuclear factor kappa-B pathwayassociated proteins,including Toll-like receptor 4,myeloid differentiation factor 88,I kappa B alpha,and phosphorylated-I kappa B alpha,and also weakened the neuroprotective effects of vagus nerve stimulation in ischemic stroke.Vagus nerve stimulation inhibited Toll-like receptor 4/nuclear factor kappa-B expression through activatingα7 nicotinic acetylcholine receptor and regulated microglial polarization after ischemic stroke,thereby playing a role in the treatment of ischemic stroke.Findings from this study confirm the mechanism underlying vagus nerve stimulation against ischemic stroke.
文摘BACKGROUND Human Wharton’s jelly-derived mesenchymal stromal/stem cells(hWJ-MSCs)have gained considerable attention in their applications in cell-based therapy due to several advantages offered by them.Recently,we reported that hWJ-MSCs and their conditioned medium have significant therapeutic radioprotective potential.This finding raised an obvious question to identify unique features of hWJ-MSCs over other sources of stem cells for a better understanding of its radioprotective mechanism.AIM To understand the radioprotective mechanism of soluble factors secreted by hWJMSCs and identification of their unique genes.METHODS Propidium iodide staining,endogenous spleen colony-forming assay,and survival study were carried out for radioprotection studies.Homeostasis-driven proliferation assay was performed for in vivo lymphocyte proliferation.Analysis of RNAseq data was performed to find the unique genes of WJ-MSCs by comparing them with bone marrow mesenchymal stem cells,embryonic stem cells,and human fibroblasts.Gene enrichment analysis and protein-protein interaction network were used for pathway analysis.RESULTS Co-culture of irradiated murine splenic lymphocytes with WJ-MSCs offered significant radioprotection to lymphocytes.WJ-MSC transplantation increased the homeostasis-driven proliferation of the lymphocytes.Neutralization of WJ-MSC conditioned medium with granulocyte-colony stimulating factor antibody abolished therapeutic radioprotection.Transcriptome analysis showed that WJ-MSCs share several common genes with bone marrow MSCs and embryonic stem cells and express high levels of unique genes such as interleukin(IL)1-α,IL1-β,IL-6,CXCL3,CXCL5,CXCL8,CXCL2,CCL2,FLT-1,and IL-33.It was also observed that WJ-MSCs preferentially modulate several cellular pathways and processes that handle the repair and regeneration of damaged tissues compared to stem cells from other sources.Cytokine-based network analysis showed that most of the radiosensitive tissues have a more complex network for the elevated cytokines.CONCLUSION Systemic infusion of WJ-MSC conditioned media will have significant potential for treating accidental radiation exposed victims。
文摘According to the definition of cytokine, the direction of signaling should be from cytokine to receptor. The counter receptor was presented. Membrane bound macrophage colony-stimulating factor (m-M-CSF) and its receptor (M-CSF-R) were shown in human leukemic cell line J6-1 as autojuxtacrine mechanism. Soluble M-CSF receptor (sM-CSF-R), which was isolated from J6-1 cells membrane, was added into J6-1 cell culture. It was observed inhibition of J6-1 cell proliferation, decreasing of mitosis index and ratio of multinuclear cells, enlargement of cell diameter and volume, down regulation of numerous surface antigens. Dramatic change of intracellular pH was shown between several min to 20 min after treatment of sM-CSF-R. It suggested that some information was transmitted via m-M-CSF from sM-CSF-R. This counter signaling was not influenced by saccharification of m-M-CSF.
文摘Colony-stimulating factor-1 (CSF-1), which is necessary for cell proliferation and differentiation, regulates both immediate and delayed early responses throughout G1 phase. The binding of CSF-1 to its receptor (CSF-1R) triggers phosphorylation of the receptor and its intrinsic tyrosine kinase. The activated receptor binds directly to cytoplasmic effector proteins, which induce multiple-signal transduction pathways. CSF-1 can induce the c-myc gene expression via Ras and Ets-related proteins. The expression of c-fos/jun family genes is also targeted following the activation of Ras. CSF-1R activates STAT1 and STAT3 to participate in signaling, but JAKs do not appear to contribute to signaling by CSF-1R. CSF-1R activates PI3-kinase, and PI3-kinase can interact with downstream proteins by the MAPKK-related pathway independent of Ras/Raf. PC-PLC can enforce signaling in response to CSF-1. Furthermore, the turnover and dephosphorylation by the phosphatase SHPTP1 of CSF-1R are the major mechanism in the negative regulation of signaling by CSF-1R.
文摘目的探讨微生态制剂联合浙贝黄芩汤对急性淋巴细胞白血病(ALL)大剂量化疗后患者粒细胞集落刺激因子受体(G-CSFR)、粒单系集落形成单位(CFU-GM)、肠道菌群及红系爆式集落形成单位(BFU-E)的影响。方法选取延安大学附属医院2019年6月至2022年12月收治的ALL患者130例作为研究对象,根据治疗方法将患者分为A组、B组、C组,3组患者均接受大剂量化疗,化疗结束48 h后A组患者实施常规治疗,B组患者单纯浙贝黄芩汤治疗,C组给予微生态制剂联合浙贝黄芩汤治疗,治疗12 d后,对3组患者G-CSFR、CFU-GM、BFU-E表达情况及血细胞数量进行检测。结果治疗后,C组血红蛋白、白细胞、血小板[(79±6)g/L、(3.8±0.4)×10^(9)/L、(66.4±3.6)×10^(9)/L]与A组[(59±7)g/L、(3.2±0.4)×10^(9)/L、(52.6±2.8)×10^(9)/L]、B组[(61±7)g/L、(3.1±0.3)×10^(9)/L、(52.8±2.6)×10^(9)/L]对比,差异有统计学意义(P<0.05)。C组G-CSFR(5.35±0.16)pg/ml和白细胞介素-11受体(IL-11R)(6.38±0.54)μg/kg水平均高于A组[(2.23±0.13)pg/ml和(1.49±0.24)μg/kg]和B组[(2.31±0.16)pg/ml和(2.31±0.49)μg/kg]差异有统计学意义(P<0.05)。治疗后,C组患者7 d CFU-GM(18.5±6.0)个和14 d BFU-E(83.5±7.5)个高于A组[7 d CFU-GM(9.5±2.0)个和14 d BFU-E(59.5±6.5)个]和B组[7 d CFU-GM(12.0±6.5)个和14 d BFU-E(63.5±5.0)个],差异有统计学意义(P<0.05)。7 d后,C组双歧杆菌(12.56±3.25)lgCFU/g、乳酸杆菌(13.56±2.58)lgCFU/g、肠杆菌(5.12±1.45)lgCFU/g、肠球菌(5.14±0.58)lgCFU/g高于A组[(9.26±1.03)lg CFU/g、(8.65±0.84)lg CFU/g、(8.08±0.64)lgCFU/g、(8.15±0.46)lgCFU/g]和B组[(11.35±1.36)lg CFU/g、(12.43±1.14)lgCFU/g、(6.49±0.55)lgCFU/g、(6.66±0.43)lgCFU/g],差异有统计学意义(P<0.05)。结论微生态制剂联合浙贝黄芩汤治疗可以有效提高ALL大剂量化疗后患者的G-CSFR、CFU-GM、BFU-E水平,可能更好地改善化疗引起的患者骨髓抑制情况,改善肠道菌群,具有临床研究价值。