期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
DHSEGATs:distance and hop-wise structures encoding enhanced graph attention networks 被引量:1
1
作者 HUANG Zhiguo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期350-359,共10页
Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can signi... Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can significantly improve the performance of GNNs,however,injecting high-level structure and distance into GNNs is an intuitive but untouched idea.This work sheds light on this issue and proposes a scheme to enhance graph attention networks(GATs)by encoding distance and hop-wise structure statistics.Firstly,the hop-wise structure and distributional distance information are extracted based on several hop-wise ego-nets of every target node.Secondly,the derived structure information,distance information,and intrinsic features are encoded into the same vector space and then added together to get initial embedding vectors.Thirdly,the derived embedding vectors are fed into GATs,such as GAT and adaptive graph diffusion network(AGDN)to get the soft labels.Fourthly,the soft labels are fed into correct and smooth(C&S)to conduct label propagation and get final predictions.Experiments show that the distance and hop-wise structures encoding enhanced graph attention networks(DHSEGATs)achieve a competitive result. 展开更多
关键词 graph attention network(GAT) graph structure information label propagation
下载PDF
Topic-Aware Abstractive Summarization Based on Heterogeneous Graph Attention Networks for Chinese Complaint Reports
2
作者 Yan Li Xiaoguang Zhang +4 位作者 Tianyu Gong Qi Dong Hailong Zhu Tianqiang Zhang Yanji Jiang 《Computers, Materials & Continua》 SCIE EI 2023年第9期3691-3705,共15页
Automatic text summarization(ATS)plays a significant role in Natural Language Processing(NLP).Abstractive summarization produces summaries by identifying and compressing the most important information in a document.Ho... Automatic text summarization(ATS)plays a significant role in Natural Language Processing(NLP).Abstractive summarization produces summaries by identifying and compressing the most important information in a document.However,there are only relatively several comprehensively evaluated abstractive summarization models that work well for specific types of reports due to their unstructured and oral language text characteristics.In particular,Chinese complaint reports,generated by urban complainers and collected by government employees,describe existing resident problems in daily life.Meanwhile,the reflected problems are required to respond speedily.Therefore,automatic summarization tasks for these reports have been developed.However,similar to traditional summarization models,the generated summaries still exist problems of informativeness and conciseness.To address these issues and generate suitably informative and less redundant summaries,a topic-based abstractive summarization method is proposed to obtain global and local features.Additionally,a heterogeneous graph of the original document is constructed using word-level and topic-level features.Experiments and analyses on public review datasets(Yelp and Amazon)and our constructed dataset(Chinese complaint reports)show that the proposed framework effectively improves the performance of the abstractive summarization model for Chinese complaint reports. 展开更多
关键词 Text summarization TOPIC Chinese complaint report heterogeneous graph attention network
下载PDF
Enhanced Topic-Aware Summarization Using Statistical Graph Neural Networks
3
作者 Ayesha Khaliq Salman Afsar Awan +2 位作者 Fahad Ahmad Muhammad Azam Zia Muhammad Zafar Iqbal 《Computers, Materials & Continua》 SCIE EI 2024年第8期3221-3242,共22页
The rapid expansion of online content and big data has precipitated an urgent need for efficient summarization techniques to swiftly comprehend vast textual documents without compromising their original integrity.Curr... The rapid expansion of online content and big data has precipitated an urgent need for efficient summarization techniques to swiftly comprehend vast textual documents without compromising their original integrity.Current approaches in Extractive Text Summarization(ETS)leverage the modeling of inter-sentence relationships,a task of paramount importance in producing coherent summaries.This study introduces an innovative model that integrates Graph Attention Networks(GATs)with Transformer-based Bidirectional Encoder Representa-tions from Transformers(BERT)and Latent Dirichlet Allocation(LDA),further enhanced by Term Frequency-Inverse Document Frequency(TF-IDF)values,to improve sentence selection by capturing comprehensive topical information.Our approach constructs a graph with nodes representing sentences,words,and topics,thereby elevating the interconnectivity and enabling a more refined understanding of text structures.This model is stretched to Multi-Document Summarization(MDS)from Single-Document Summarization,offering significant improvements over existing models such as THGS-GMM and Topic-GraphSum,as demonstrated by empirical evaluations on benchmark news datasets like Cable News Network(CNN)/Daily Mail(DM)and Multi-News.The results consistently demonstrate superior performance,showcasing the model’s robustness in handling complex summarization tasks across single and multi-document contexts.This research not only advances the integration of BERT and LDA within a GATs but also emphasizes our model’s capacity to effectively manage global information and adapt to diverse summarization challenges. 展开更多
关键词 SUMMARIZATION graph attention network bidirectional encoder representations from transformers Latent Dirichlet Allocation term frequency-inverse document frequency
下载PDF
Social Robot Detection Method with Improved Graph Neural Networks
4
作者 Zhenhua Yu Liangxue Bai +1 位作者 Ou Ye Xuya Cong 《Computers, Materials & Continua》 SCIE EI 2024年第2期1773-1795,共23页
Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph ... Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships,which makes it difficult to accurately describe the difference between the topological relations of nodes,resulting in low detection accuracy of social robots.This paper proposes a social robot detection method with the use of an improved neural network.First,social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social relationships effectively.Then,a linear modulated graph attention residual network model is devised to extract the node and network topology features of the social relation subgraph,thereby generating comprehensive social relation subgraph features,and the feature-wise linear modulation module of the model can better learn the differences between the nodes.Next,user text content and behavioral gene sequences are extracted to construct social behavioral features combined with the social relationship subgraph features.Finally,social robots can be more accurately identified by combining user behavioral and relationship features.By carrying out experimental studies based on the publicly available datasets TwiBot-20 and Cresci-15,the suggested method’s detection accuracies can achieve 86.73%and 97.86%,respectively.Compared with the existing mainstream approaches,the accuracy of the proposed method is 2.2%and 1.35%higher on the two datasets.The results show that the method proposed in this paper can effectively detect social robots and maintain a healthy ecological environment of social networks. 展开更多
关键词 Social robot detection social relationship subgraph graph attention network feature linear modulation behavioral gene sequences
下载PDF
Graph Attention Residual Network Based Routing and Fault-Tolerant Scheduling Mechanism for Data Flow in Power Communication Network
5
作者 Zhihong Lin Zeng Zeng +3 位作者 Yituan Yu Yinlin Ren Xuesong Qiu Jinqian Chen 《Computers, Materials & Continua》 SCIE EI 2024年第10期1641-1665,共25页
For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service... For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability,which often limits TSN scheduling performance in fault-free ideal states.So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism(GRFS)for data flow in PCN,which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding(CQF)model and fault recovery method,which reduces the impact of faults by simplified scheduling configurations of CQF and fault-tolerance of prioritizing the rerouting of faulty time-sensitive(TS)flows;considering that PF leading to changes in network topology is more appropriately solved by doing routing and time slot injection decisions hop-by-hop,and that reasonable network load can reduce the damage caused by PF and reserve resources for the rerouting of faulty TS flows,an optimization model for joint routing and scheduling is constructed with scheduling success rate as the objective,and with traffic latency and network load as constraints;to catch changes in TSN topology and traffic load,a D3QN algorithm based on a multi-head graph attention residual network(MGAR)is designed to solve the problem model,where the MGAR based encoder reconstructs the TSN status into feature embedding vectors,and a dueling network decoder performs decoding tasks on the reconstructed feature embedding vectors.Simulation results show that GRFS outperforms heuristic fault-tolerance algorithms and other benchmark schemes by approximately 10%in routing and scheduling success rate in ideal states and 5%in rerouting and rescheduling success rate in fault states. 展开更多
关键词 Time-sensitive network deep reinforcement learning graph attention network fault tolerance
下载PDF
Carbon Emission Factors Prediction of Power Grid by Using Graph Attention Network
6
作者 Xin Shen Jiahao Li +3 位作者 YujunYin Jianlin Tang Weibin Lin Mi Zhou 《Energy Engineering》 EI 2024年第7期1945-1961,共17页
Advanced carbon emission factors of a power grid can provide users with effective carbon reduction advice,which is of immense importance in mobilizing the entire society to reduce carbon emissions.The method of calcul... Advanced carbon emission factors of a power grid can provide users with effective carbon reduction advice,which is of immense importance in mobilizing the entire society to reduce carbon emissions.The method of calculating node carbon emission factors based on the carbon emissions flow theory requires real-time parameters of a power grid.Therefore,it cannot provide carbon factor information beforehand.To address this issue,a prediction model based on the graph attention network is proposed.The model uses a graph structure that is suitable for the topology of the power grid and designs a supervised network using the loads of the grid nodes and the corresponding carbon factor data.The network extracts features and transmits information more suitable for the power system and can flexibly adjust the equivalent topology,thereby increasing the diversity of the structure.Its input and output data are simple,without the power grid parameters.We demonstrated its effect by testing IEEE-39 bus and IEEE-118 bus systems with average error rates of 2.46%and 2.51%. 展开更多
关键词 Predict carbon factors graph attention network prediction algorithm power grid operating parameters
下载PDF
The Short-Term Prediction ofWind Power Based on the Convolutional Graph Attention Deep Neural Network
7
作者 Fan Xiao Xiong Ping +4 位作者 Yeyang Li Yusen Xu Yiqun Kang Dan Liu Nianming Zhang 《Energy Engineering》 EI 2024年第2期359-376,共18页
The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key... The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key role in improving the safety and economic benefits of the power grid.This paper proposes a wind power predicting method based on a convolutional graph attention deep neural network with multi-wind farm data.Based on the graph attention network and attention mechanism,the method extracts spatial-temporal characteristics from the data of multiple wind farms.Then,combined with a deep neural network,a convolutional graph attention deep neural network model is constructed.Finally,the model is trained with the quantile regression loss function to achieve the wind power deterministic and probabilistic prediction based on multi-wind farm spatial-temporal data.A wind power dataset in the U.S.is taken as an example to demonstrate the efficacy of the proposed model.Compared with the selected baseline methods,the proposed model achieves the best prediction performance.The point prediction errors(i.e.,root mean square error(RMSE)and normalized mean absolute percentage error(NMAPE))are 0.304 MW and 1.177%,respectively.And the comprehensive performance of probabilistic prediction(i.e.,con-tinuously ranked probability score(CRPS))is 0.580.Thus,the significance of multi-wind farm data and spatial-temporal feature extraction module is self-evident. 展开更多
关键词 Format wind power prediction deep neural network graph attention network attention mechanism quantile regression
下载PDF
Adaptive spatial-temporal graph attention network for traffic speed prediction
8
作者 ZHANG Xijun ZHANG Baoqi +2 位作者 ZHANG Hong NIE Shengyuan ZHANG Xianli 《High Technology Letters》 EI CAS 2024年第3期221-230,共10页
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic... Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction. 展开更多
关键词 traffic speed prediction spatial-temporal correlation self-adaptive adjacency ma-trix graph attention network(GAT) bidirectional gated recurrent unit(BiGRU)
下载PDF
Continuous Sign Language Recognition Based on Spatial-Temporal Graph Attention Network 被引量:2
9
作者 Qi Guo Shujun Zhang Hui Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1653-1670,共18页
Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtempora... Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset. 展开更多
关键词 Continuous sign language recognition graph attention network bidirectional long short-term memory connectionist temporal classification
下载PDF
An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism
10
作者 Zhijun Guo Yun Sun +2 位作者 YingWang Chaoqi Fu Jilong Zhong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2375-2398,共24页
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne... Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution. 展开更多
关键词 RESILIENCE cooperative mission FANET spatio-temporal node pooling multi-head attention graph network
下载PDF
Air Pollution Prediction Via Graph Attention Network and Gated Recurrent Unit
11
作者 Shun Wang Lin Qiao +3 位作者 Wei Fang Guodong Jing Victor S.Sheng Yong Zhang 《Computers, Materials & Continua》 SCIE EI 2022年第10期673-687,共15页
PM2.5 concentration prediction is of great significance to environmental protection and human health.Achieving accurate prediction of PM2.5 concentration has become an important research task.However,PM2.5 pollutants ... PM2.5 concentration prediction is of great significance to environmental protection and human health.Achieving accurate prediction of PM2.5 concentration has become an important research task.However,PM2.5 pollutants can spread in the earth’s atmosphere,causing mutual influence between different cities.To effectively capture the air pollution relationship between cities,this paper proposes a novel spatiotemporal model combining graph attention neural network(GAT)and gated recurrent unit(GRU),named GAT-GRU for PM2.5 concentration prediction.Specifically,GAT is used to learn the spatial dependence of PM2.5 concentration data in different cities,and GRU is to extract the temporal dependence of the long-term data series.The proposed model integrates the learned spatio-temporal dependencies to capture long-term complex spatio-temporal features.Considering that air pollution is related to the meteorological conditions of the city,the knowledge acquired from meteorological data is used in the model to enhance PM2.5 prediction performance.The input of the GAT-GRU model consists of PM2.5 concentration data and meteorological data.In order to verify the effectiveness of the proposed GAT-GRU prediction model,this paper designs experiments on real-world datasets compared with other baselines.Experimental results prove that our model achieves excellent performance in PM2.5 concentration prediction. 展开更多
关键词 Air pollution prediction deep learning spatiotemporal data modeling graph attention network
下载PDF
Label-Aware Chinese Event Detection with Heterogeneous Graph Attention Network
12
作者 崔诗尧 郁博文 +3 位作者 从鑫 柳厅文 谭庆丰 时金桥 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第1期227-242,共16页
Event detection(ED)seeks to recognize event triggers and classify them into the predefined event types.Chinese ED is formulated as a character-level task owing to the uncertain word boundaries.Prior methods try to inc... Event detection(ED)seeks to recognize event triggers and classify them into the predefined event types.Chinese ED is formulated as a character-level task owing to the uncertain word boundaries.Prior methods try to incorpo-rate word-level information into characters to enhance their semantics.However,they experience two problems.First,they fail to incorporate word-level information into each character the word encompasses,causing the insufficient word-charac-ter interaction problem.Second,they struggle to distinguish events of similar types with limited annotated instances,which is called the event confusing problem.This paper proposes a novel model named Label-Aware Heterogeneous Graph Attention Network(L-HGAT)to address these two problems.Specifically,we first build a heterogeneous graph of two node types and three edge types to maximally preserve word-character interactions,and then deploy a heterogeneous graph attention network to enhance the semantic propagation between characters and words.Furthermore,we design a pushing-away game to enlarge the predicting gap between the ground-truth event type and its confusing counterpart for each character.Experimental results show that our L-HGAT model consistently achieves superior performance over prior competitive methods. 展开更多
关键词 Chinese event detection heterogeneous graph attention network(HGAT) label embedding
原文传递
A Study on Short Text Matching Method Based on KS-BERT Algorithm
13
作者 YANG Hao-wen SUN Mei-feng 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期164-173,共10页
To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the i... To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the input text,and then sent the expanded text to both the context encoder BERT and the structure encoder GAT to capture the contextual relationship features and structural features of the input text.Finally,the match was determined based on the fusion result of the two features.Experiment results based on the public datasets BQ_corpus and LCQMC showed that KS-BERT outperforms advanced models such as ERNIE 2.0.This Study showed that knowledge enhancement and structure enhancement are two effective ways to improve BERT in short text matching.In BQ_corpus,ACC was improved by 0.2%and 0.3%,respectively,while in LCQMC,ACC was improved by 0.4%and 0.9%,respectively. 展开更多
关键词 Deep learning Short text matching graph attention network Knowledge enhancement
下载PDF
Graph-based method for human-object interactions detection 被引量:1
14
作者 XIA Li-min WU Wei 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期205-218,共14页
Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the d... Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the detection of HOIs is still an onerous challenge.Unlike most of the current works for HOIs detection which only rely on the pairwise information of a human and an object,we propose a graph-based HOIs detection method that models context and global structure information.Firstly,to better utilize the relations between humans and objects,the detected humans and objects are regarded as nodes to construct a fully connected undirected graph,and the graph is pruned to obtain an HOI graph that only preserving the edges connecting human and object nodes.Then,in order to obtain more robust features of human and object nodes,two different attention-based feature extraction networks are proposed,which model global and local contexts respectively.Finally,the graph attention network is introduced to pass messages between different nodes in the HOI graph iteratively,and detect the potential HOIs.Experiments on V-COCO and HICO-DET datasets verify the effectiveness of the proposed method,and show that it is superior to many existing methods. 展开更多
关键词 human-object interactions visual relationship context information graph attention network
下载PDF
GATiT:An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning
15
作者 Yu Song Pengcheng Wu +2 位作者 Dongming Dai Mingyu Gui Kunli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4767-4790,共24页
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me... The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods. 展开更多
关键词 Intelligent diagnosis knowledge graph graph attention network knowledge reasoning
下载PDF
Fine-Grained Multivariate Time Series Anomaly Detection in IoT 被引量:1
16
作者 Shiming He Meng Guo +4 位作者 Bo Yang Osama Alfarraj Amr Tolba Pradip Kumar Sharma Xi’ai Yan 《Computers, Materials & Continua》 SCIE EI 2023年第6期5027-5047,共21页
Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and m... Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and malfunctions.However,it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis,a process referred to as fine-grained anomaly detection(FGAD).Although further FGAD can be extended based on TSAD methods,existing works do not provide a quantitative evaluation,and the performance is unknown.Therefore,to tackle the FGAD problem,this paper first verifies that the TSAD methods achieve low performance when applied to the FGAD task directly because of the excessive fusion of features and the ignoring of the relationship’s dynamic changes between indicators.Accordingly,this paper proposes a mul-tivariate time series fine-grained anomaly detection(MFGAD)framework.To avoid excessive fusion of features,MFGAD constructs two sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a single model and then combines the two kinds of abnormal results to detect the fine-grained anomaly.Based on this framework,an algorithm based on Graph Attention Neural Network(GAT)and Attention Convolutional Long-Short Term Memory(A-ConvLSTM)is proposed,in which GAT learns temporal features of multiple indicators to detect abnormal timestamps and A-ConvLSTM captures the dynamic relationship between indicators to identify abnormal indicators.Extensive simulations on a real-world dataset demonstrate that the proposed algorithm can achieve a higher F1 score and hit rate than the extension of existing TSAD methods with the benefit of two independent sub-models for timestamp and indicator detection. 展开更多
关键词 Multivariate time series graph attention neural network fine-grained anomaly detection
下载PDF
AG-GATCN:A novel method for predicting essential proteins
17
作者 杨培实 卢鹏丽 张腾 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期737-745,共9页
Essential proteins play an important role in disease diagnosis and drug development.Many methods have been devoted to the essential protein prediction by using some kinds of biological information.However,they either ... Essential proteins play an important role in disease diagnosis and drug development.Many methods have been devoted to the essential protein prediction by using some kinds of biological information.However,they either ignore the noise presented in the biological information itself or the noise generated during feature extraction.To overcome these problems,in this paper,we propose a novel method for predicting essential proteins called attention gate-graph attention network and temporal convolutional network(AG-GATCN).In AG-GATCN method,we use improved temporal convolutional network(TCN)to extract features from gene expression sequence.To address the noise in the gene expression sequence itself and the noise generated after the dilated causal convolution,we introduce attention mechanism and gating mechanism in TCN.In addition,we use graph attention network(GAT)to extract protein–protein interaction(PPI)network features,in which we construct the feature matrix by introducing node2vec technique and 7 centrality metrics,and to solve the GAT oversmoothing problem,we introduce gated tanh unit(GTU)in GAT.Finally,two types of features are integrated by us to predict essential proteins.Compared with the existing methods for predicting essential proteins,the experimental results show that AG-GATCN achieves better performance. 展开更多
关键词 complex networks essential proteins temporal convolutional network graph attention network gene expression
下载PDF
Graph attention network for global search of atomic clusters:A case study of Ag_(n)(n=14-26)clusters
18
作者 Linwei Sai Li Fu +1 位作者 Qiuying Du Jijun Zhao 《Frontiers of physics》 SCIE CSCD 2023年第1期105-113,共9页
Due to coexistence of huge number of structural isomers,global search for the ground-state structures of atomic clusters is a challenging issue.The difficulty also originates from the computational cost of ab initio m... Due to coexistence of huge number of structural isomers,global search for the ground-state structures of atomic clusters is a challenging issue.The difficulty also originates from the computational cost of ab initio methods for describing the potential energy surface.Recently,machine learning techniques have been widely utilized to accelerate materials discovery and molecular simulation.Compared to the commonly used artificial neural network,graph network is naturally suitable for clusters with flexible geometric environment of each atom.Herein we develop a cluster graph attention network(CGANet)by aggregating information of neighboring vertices and edges using attention mechanism,which can precisely predict the binding energy and force of silver clusters with root mean square error of 5.4 meV/atom and mean absolute error of 42.3 meV/Å,respectively.As a proof-of-concept,we have performed global optimization of mediumsized Agn clusters(n=14–26)by combining CGANet and genetic algorithm.The reported ground-state structures for n=14–21,have been successfully reproduced,while entirely new lowest-energy structures are obtained for n=22–26.In addition to the description of potential energy surface,the CGANet is also applied to predict the electronic properties of clusters,such as HOMO energy and HOMO-LUMO gap.With accuracy comparable to ab initio methods and acceleration by at least two orders of magnitude,CGANet holds great promise in global search of lowest-energy structures of large clusters and inverse design of functional clusters. 展开更多
关键词 deep learning graph attention network potential surface fitting Ag clusters global search
原文传递
Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network
19
作者 Yuying Huo Yilang Guo +4 位作者 Jiakang Wang Huijie Xue Yujuan Feng Weizheng Chen Xiangyu Li 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2023年第9期720-733,共14页
Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented opportunities to elucidate tissue architecture and function in situ.Spatial transcriptomics can provide multimodal and compl... Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented opportunities to elucidate tissue architecture and function in situ.Spatial transcriptomics can provide multimodal and complementary information simultaneously,including gene expression profiles,spatial locations,and histology images.However,most existing methods have limitations in efficiently utilizing spatial information and matched high-resolution histology images.To fully leverage the multi-modal information,we propose a SPAtially embedded Deep Attentional graph Clustering(SpaDAC)method to identify spatial domains while reconstructing denoised gene expression profiles.This method can efficiently learn the low-dimensional embeddings for spatial transcriptomics data by constructing multi-view graph modules to capture both spatial location connectives and morphological connectives.Benchmark results demonstrate that SpaDAC outperforms other algorithms on several recent spatial transcriptomics datasets.SpaDAC is a valuable tool for spatial domain detection,facilitating the comprehension of tissue architecture and cellular microenvironment.The source code of SpaDAC is freely available at Github(https://github.com/huoyuying/SpaDAC.git). 展开更多
关键词 Spatialtranscriptomics Spatial domaindetection Multi-modal integration graph attention network
原文传递
Graph attention convolutional neural network model for chemical poisoning of honey bees’ prediction 被引量:12
20
作者 Fan Wang Jing-Fang Yang +4 位作者 Meng-Yao Wang Chen-Yang Jia Xing-Xing Shi Ge-Fei Hao Guang-Fu Yang 《Science Bulletin》 SCIE EI CAS CSCD 2020年第14期1184-1191,M0004,共9页
The impact of pesticides on insect pollinators has caused worldwide concern. Both global bee decline and stopping the use of pesticides may have serious consequences for food security. Automated and accurate predictio... The impact of pesticides on insect pollinators has caused worldwide concern. Both global bee decline and stopping the use of pesticides may have serious consequences for food security. Automated and accurate prediction of chemical poisoning of honey bees is a challenging task owing to a lack of understanding of chemical toxicity and introspection. Deep learning(DL) shows potential utility for general and highly variable tasks across fields. Here, we developed a new DL model of deep graph attention convolutional neural networks(GACNN) with the combination of undirected graph(UG) and attention convolutional neural networks(ACNN) to accurately classify chemical poisoning of honey bees. We used a training dataset of 720 pesticides and an external validation dataset of 90 pesticides, which is one order of magnitude larger than the previous datasets. We tested its performance in two ways: poisonous versus nonpoisonous and GACNN versus other frequently-used machine learning models. The first case represents the accuracy in identifying bee poisonous chemicals. The second represents performance advantages. The GACNN achieved ~6% higher performance for predicting toxic samples and more stable with ~7%Matthews Correlation Coefficient(MCC) higher compared to all tested models, demonstrating GACNN is capable of accurately classifying chemicals and has considerable potential in practical applications.In addition, we also summarized and evaluated the mechanisms underlying the response of honey bees to chemical exposure based on the mapping of molecular similarity. Moreover, our cloud platform(http://beetox.cn) of this model provides low-cost universal access to information, which could vitally enhance environmental risk assessment. 展开更多
关键词 Deep learning graph attention convolutional neural networks Honey bees toxicity PESTICIDE Molecular design
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部