The accurate prediction of displacement is crucial for landslide deformation monitoring and early warning.This study focuses on a landslide in Wenzhou Belt Highway and proposes a novel multivariate landslide displacem...The accurate prediction of displacement is crucial for landslide deformation monitoring and early warning.This study focuses on a landslide in Wenzhou Belt Highway and proposes a novel multivariate landslide displacement prediction method that relies on graph deep learning and Global Navigation Satellite System(GNSS)positioning.First model the graph structure of the monitoring system based on the engineering positions of the GNSS monitoring points and build the adjacent matrix of graph nodes.Then construct the historical and predicted time series feature matrixes using the processed temporal data including GNSS displacement,rainfall,groundwater table and soil moisture content and the graph structure.Last introduce the state-of-the-art graph deep learning GTS(Graph for Time Series)model to improve the accuracy and reliability of landslide displacement prediction which utilizes the temporal-spatial dependency of the monitoring system.This approach outperforms previous studies that only learned temporal features from a single monitoring point and maximally weighs the prediction performance and the priori graph of the monitoring system.The proposed method performs better than SVM,XGBoost,LSTM and DCRNN models in terms of RMSE(1.35 mm),MAE(1.14 mm)and MAPE(0.25)evaluation metrics,which is provided to be effective in future landslide failure early warning.展开更多
Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures...Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures and data information of power networks.To this end,this study proposes a fault diagnostic model for distribution systems based on deep graph learning.This model considers the physical structure of the power network as a significant constraint during model training,which endows the model with stronger information perception to resist abnormal data input and unknown application conditions.In addition,a special spatiotemporal convolutional block is utilized to enhance the waveform feature extraction ability.This enables the proposed fault diagnostic model to be more effective in dealing with both fault waveform changes and the spatial effects of faults.In addition,a multi-task learning framework is constructed for fault location and fault type analysis,which improves the performance and generalization ability of the model.The IEEE 33-bus and IEEE 37-bus test systems are modeled to verify the effectiveness of the proposed fault diagnostic model.Finally,different fault conditions,topological changes,and interference factors are considered to evaluate the anti-interference and generalization performance of the proposed model.Experimental results demonstrate that the proposed model outperforms other state-of-the-art methods.展开更多
financial services:for example,GPS and Bluetooth inspire location-based services,and search and web technologies motivate online shopping,reviews,and payments.These business services have become more connected than ev...financial services:for example,GPS and Bluetooth inspire location-based services,and search and web technologies motivate online shopping,reviews,and payments.These business services have become more connected than ever,and as a result,financial frauds have become a significant challenge.Therefore,combating financial risks in the big data era requires breaking the borders of traditional data,algorithms,and systems.An increasing number of studies have addressed these challenges and proposed new methods for risk detection,assessment,and forecasting.As a key contribution,we categorize these works in a rational framework:first,we identify the data that can be used to identify risks.We then discuss how big data can be combined with the emerging tools to effectively learn or analyze financial risk.Finally,we highlight the effectiveness of these methods in real-world applications.Furthermore,we stress on the importance of utilizing multi-channel information,graphs,and networks of long-range dependence for the effective identification of financial risks.We conclude our survey with a discussion on the new challenges faced by the financial sector,namely,deep fake technology,adversaries,causal and interpretable inference,privacy protection,and microsimulations.展开更多
基金funded by the National Natural Science Foundation of China (Grant No.41902240).
文摘The accurate prediction of displacement is crucial for landslide deformation monitoring and early warning.This study focuses on a landslide in Wenzhou Belt Highway and proposes a novel multivariate landslide displacement prediction method that relies on graph deep learning and Global Navigation Satellite System(GNSS)positioning.First model the graph structure of the monitoring system based on the engineering positions of the GNSS monitoring points and build the adjacent matrix of graph nodes.Then construct the historical and predicted time series feature matrixes using the processed temporal data including GNSS displacement,rainfall,groundwater table and soil moisture content and the graph structure.Last introduce the state-of-the-art graph deep learning GTS(Graph for Time Series)model to improve the accuracy and reliability of landslide displacement prediction which utilizes the temporal-spatial dependency of the monitoring system.This approach outperforms previous studies that only learned temporal features from a single monitoring point and maximally weighs the prediction performance and the priori graph of the monitoring system.The proposed method performs better than SVM,XGBoost,LSTM and DCRNN models in terms of RMSE(1.35 mm),MAE(1.14 mm)and MAPE(0.25)evaluation metrics,which is provided to be effective in future landslide failure early warning.
基金supported by National Natural Science Foundation of China(No.52277083)。
文摘Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures and data information of power networks.To this end,this study proposes a fault diagnostic model for distribution systems based on deep graph learning.This model considers the physical structure of the power network as a significant constraint during model training,which endows the model with stronger information perception to resist abnormal data input and unknown application conditions.In addition,a special spatiotemporal convolutional block is utilized to enhance the waveform feature extraction ability.This enables the proposed fault diagnostic model to be more effective in dealing with both fault waveform changes and the spatial effects of faults.In addition,a multi-task learning framework is constructed for fault location and fault type analysis,which improves the performance and generalization ability of the model.The IEEE 33-bus and IEEE 37-bus test systems are modeled to verify the effectiveness of the proposed fault diagnostic model.Finally,different fault conditions,topological changes,and interference factors are considered to evaluate the anti-interference and generalization performance of the proposed model.Experimental results demonstrate that the proposed model outperforms other state-of-the-art methods.
基金supported by the National Natural Science Foundation of China under Grant Nos.91746301,61772498,61802370,and 61902380.
文摘financial services:for example,GPS and Bluetooth inspire location-based services,and search and web technologies motivate online shopping,reviews,and payments.These business services have become more connected than ever,and as a result,financial frauds have become a significant challenge.Therefore,combating financial risks in the big data era requires breaking the borders of traditional data,algorithms,and systems.An increasing number of studies have addressed these challenges and proposed new methods for risk detection,assessment,and forecasting.As a key contribution,we categorize these works in a rational framework:first,we identify the data that can be used to identify risks.We then discuss how big data can be combined with the emerging tools to effectively learn or analyze financial risk.Finally,we highlight the effectiveness of these methods in real-world applications.Furthermore,we stress on the importance of utilizing multi-channel information,graphs,and networks of long-range dependence for the effective identification of financial risks.We conclude our survey with a discussion on the new challenges faced by the financial sector,namely,deep fake technology,adversaries,causal and interpretable inference,privacy protection,and microsimulations.