The existing graph convolution methods usually suffer high computational burdens,large memory requirements,and intractable batch-processing.In this paper,we propose a high-efficient variational gridded graph convoluti...The existing graph convolution methods usually suffer high computational burdens,large memory requirements,and intractable batch-processing.In this paper,we propose a high-efficient variational gridded graph convolution network(VG-GCN)to encode non-regular graph data,which overcomes all these aforementioned problems.To capture graph topology structures efficiently,in the proposed framework,we propose a hierarchically-coarsened random walk(hcr-walk)by taking advantage of the classic random walk and node/edge encapsulation.The hcr-walk greatly mitigates the problem of exponentially explosive sampling times which occur in the classic version,while preserving graph structures well.To efficiently encode local hcr-walk around one reference node,we project hcrwalk into an ordered space to form image-like grid data,which favors those conventional convolution networks.Instead of the direct 2-D convolution filtering,a variational convolution block(VCB)is designed to model the distribution of the randomsampling hcr-walk inspired by the well-formulated variational inference.We experimentally validate the efficiency and effectiveness of our proposed VG-GCN,which has high computation speed,and the comparable or even better performance when compared with baseline GCNs.展开更多
To construct a high efficient text clustering algorithm the multilevel graph model and the refinement algorithm used in the uncoarsening phase is discussed. The model is applied to text clustering. The performance of ...To construct a high efficient text clustering algorithm the multilevel graph model and the refinement algorithm used in the uncoarsening phase is discussed. The model is applied to text clustering. The performance of clustering algorithm has to be improved with the refinement algorithm application. The experiment result demonstrated that the multilevel graph text clustering algorithm is available. Key words text clustering - multilevel coarsen graph model - refinement algorithm - high-dimensional clustering CLC number TP301 Foundation item: Supported by the National Natural Science Foundation of China (60173051)Biography: CHEN Jian-bin(1970-), male, Associate professor, Ph. D., research direction: data mining.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province(BK20190019,BK20190452)the National Natural Science Foundation of China(62072244,61906094)the Natural Science Foundation of Shandong Province(ZR2020LZH008)。
文摘The existing graph convolution methods usually suffer high computational burdens,large memory requirements,and intractable batch-processing.In this paper,we propose a high-efficient variational gridded graph convolution network(VG-GCN)to encode non-regular graph data,which overcomes all these aforementioned problems.To capture graph topology structures efficiently,in the proposed framework,we propose a hierarchically-coarsened random walk(hcr-walk)by taking advantage of the classic random walk and node/edge encapsulation.The hcr-walk greatly mitigates the problem of exponentially explosive sampling times which occur in the classic version,while preserving graph structures well.To efficiently encode local hcr-walk around one reference node,we project hcrwalk into an ordered space to form image-like grid data,which favors those conventional convolution networks.Instead of the direct 2-D convolution filtering,a variational convolution block(VCB)is designed to model the distribution of the randomsampling hcr-walk inspired by the well-formulated variational inference.We experimentally validate the efficiency and effectiveness of our proposed VG-GCN,which has high computation speed,and the comparable or even better performance when compared with baseline GCNs.
文摘To construct a high efficient text clustering algorithm the multilevel graph model and the refinement algorithm used in the uncoarsening phase is discussed. The model is applied to text clustering. The performance of clustering algorithm has to be improved with the refinement algorithm application. The experiment result demonstrated that the multilevel graph text clustering algorithm is available. Key words text clustering - multilevel coarsen graph model - refinement algorithm - high-dimensional clustering CLC number TP301 Foundation item: Supported by the National Natural Science Foundation of China (60173051)Biography: CHEN Jian-bin(1970-), male, Associate professor, Ph. D., research direction: data mining.