期刊文献+
共找到162篇文章
< 1 2 9 >
每页显示 20 50 100
Disease gene identification by using graph kernels and Markov random fields 被引量:5
1
作者 CHEN BoLin LI Min +1 位作者 WANG JianXin WU FangXiang 《Science China(Life Sciences)》 SCIE CAS 2014年第11期1054-1063,共10页
Genes associated with similar diseases are often functionally related.This principle is largely supported by many biological data sources,such as disease phenotype similarities,protein complexes,protein-protein intera... Genes associated with similar diseases are often functionally related.This principle is largely supported by many biological data sources,such as disease phenotype similarities,protein complexes,protein-protein interactions,pathways and gene expression profiles.Integrating multiple types of biological data is an effective method to identify disease genes for many genetic diseases.To capture the gene-disease associations based on biological networks,a kernel-based Markov random field(MRF)method is proposed by combining graph kernels and the MRF method.In the proposed method,three kinds of kernels are employed to describe the overall relationships of vertices in five biological networks,respectively,and a novel weighted MRF method is developed to integrate those data.In addition,an improved Gibbs sampling procedure and a novel parameter estimation method are proposed to generate predictions from the kernel-based MRF method.Numerical experiments are carried out by integrating known gene-disease associations,protein complexes,protein-protein interactions,pathways and gene expression profiles.The proposed kernel-based MRF method is evaluated by the leave-one-out cross validation paradigm,achieving an AUC score of 0.771 when integrating all those biological data in our experiments,which indicates that our proposed method is very promising compared with many existing methods. 展开更多
关键词 disease gene identification data integration Markov random field graph kernel Bayesian analysis
原文传递
Multi-scale Graph-matching Based Kernel for Character Recognition from Natural Scenes 被引量:2
2
作者 Cun-Zhao SHI Chun-Heng WANG +2 位作者 Bai-Hua XIAO Yang ZHANG Song GAO 《自动化学报》 EI CSCD 北大核心 2014年第4期751-756,共6页
认出从自然景色图象提取的字符由于 intraclass 变化的高度是相当挑战性的。在这份报纸,我们为景色特性识别建议一个多尺度的匹配图的基于的核。以便捕获人物的内在地特殊的结构,每幅图象被与多尺度的图象格子联系的几张图代表。当也... 认出从自然景色图象提取的字符由于 intraclass 变化的高度是相当挑战性的。在这份报纸,我们为景色特性识别建议一个多尺度的匹配图的基于的核。以便捕获人物的内在地特殊的结构,每幅图象被与多尺度的图象格子联系的几张图代表。当也越过邻近的节点保存空间一致性时,二幅图象的类似被匹配二张图(图象) 因此定义为最佳精力,它在图为每个节点发现最好的火柴。计算类似是合适的为支持向量机器(SVM ) 构造一个核。与多尺度的格子匹配图获得的多重核被联合以便最后的核是更柔韧的。挑战性的 Chars74k 和 ICDAR03-CH 数据集上的试验性的结果证明建议方法比现状方法更好表现。 展开更多
关键词 字符识别 自然场景 多尺度 内核 配基 场景图 图形表示 最佳匹配
下载PDF
BLOW-UP CONDITIONS FOR A SEMILINEAR PARABOLIC SYSTEM ON LOCALLY FINITE GRAPHS
3
作者 吴艺婷 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期609-631,共23页
In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of ... In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133). 展开更多
关键词 semilinear parabolic system on graphs BLOW-UP heat kernel estimate on graphs
下载PDF
On a Sufficient and Necessary Condition for Graph Coloring
4
作者 Maodong Ye 《Open Journal of Discrete Mathematics》 2014年第1期1-5,共5页
Using the linear space over the binary field that related to a graph G, a sufficient and necessary condition for the chromatic number of G is obtained.
关键词 VERTEX COLORING CHROMATIC Number Outer-kernel SUBSPACE PLANE graph
下载PDF
EAGLE:一种内核态及用户态中基于遥测数据图的网络遥测方案 被引量:1
5
作者 肖肇斌 崔允贺 +3 位作者 陈意 申国伟 郭春 钱清 《计算机科学》 CSCD 北大核心 2024年第2期311-321,共11页
网络遥测是一种新型的网络测量技术,具有实时性强、准确性高、开销低的特点。现有网络遥测技术存在无法收集多粒度网络数据、无法有效存储大量原始网络数据、无法快速提取及生成网络遥测信息、无法利用内核态及用户态特性设计网络遥测... 网络遥测是一种新型的网络测量技术,具有实时性强、准确性高、开销低的特点。现有网络遥测技术存在无法收集多粒度网络数据、无法有效存储大量原始网络数据、无法快速提取及生成网络遥测信息、无法利用内核态及用户态特性设计网络遥测方案等问题。为此,提出了一种融合内核态及用户态的、基于遥测数据图和同步控制块的多粒度、可扩展、覆盖全网的网络遥测机制(a nEtwork telemetry mechAnism based on telemetry data Graph in kerneL and usEr mode,EAGLE)。EAGLE设计了一种能够收集多粒度数据且数据平面上灵活可控的网络遥测数据包结构,用于获取上层应用所需的数据。此外,为快速存储、查询、统计、聚合网络状态数据,实现网络遥测数据包所需遥测数据的快速提取与生成,EAGLE提出了一种基于遥测数据图及同步控制块的网络遥测信息生成方法。在此基础上,为了最大化网络遥测机制中网络遥测数据包的处理效率,EAGLE提出了融合内核态及用户态特性的网络遥测信息嵌入架构。在Open vSwitch上实现了EAGLE方案并进行了测试,测试结果表明,EAGLE能够收集多粒度数据并快速提取与生成遥测数据,且仅增加极少量的处理时延及资源占用率。 展开更多
关键词 网络遥测 遥测效率 可编程数据平面 遥测数据图 内核空间
下载PDF
基于图核同构网络的图分类方法 被引量:1
6
作者 徐立祥 葛伟 +1 位作者 陈恩红 罗斌 《计算机研究与发展》 EI CSCD 北大核心 2024年第4期903-915,共13页
图表示学习已成为图深度学习领域的一个研究热点.大多数图神经网络存在过平滑现象,这类方法重点关注图节点特征,对图的结构特征关注度不高.为了提升对图结构特征的表征能力,提出了一种基于图核同构网络的图分类方法,即KerGIN.该方法首... 图表示学习已成为图深度学习领域的一个研究热点.大多数图神经网络存在过平滑现象,这类方法重点关注图节点特征,对图的结构特征关注度不高.为了提升对图结构特征的表征能力,提出了一种基于图核同构网络的图分类方法,即KerGIN.该方法首先通过图同构网络(graph isomorphism network,GIN)对图进行节点特征编码,并使用图核方法对图进行结构编码,进一步利用Nystrom方法降低图核矩阵的维度.其次借助MLP将图核矩阵与图特征矩阵对齐,通过注意力机制将图的特征编码和结构编码进行自适应加权融合,进而得到图的最终特征表示,提升了图结构特征信息的表达能力.最后在7个公开的图分类数据集上对模型进行了实验评估:与现有图表示模型相比,KerGIN模型能够在图分类准确度上有较大幅度提升,它可以增强GIN对图结构特征信息的表达能力. 展开更多
关键词 图分类 图神经网络 图核 NYSTROM方法 图注意力机制
下载PDF
基于图拉普拉斯正则化的PET图像核重建方法
7
作者 盛玉霞 孙坤 柴利 《电子学报》 EI CAS CSCD 北大核心 2024年第1期118-128,共11页
正电子发射断层成像(Positron Emission Tomography,PET)在很多疾病的早期诊断中有重要的作用,PET图像重建的难点之一是如何在保持重建图像中病灶边缘特性的同时具有良好的去噪性能.针对此问题,本文提出了一种结合图拉普拉斯正则化和深... 正电子发射断层成像(Positron Emission Tomography,PET)在很多疾病的早期诊断中有重要的作用,PET图像重建的难点之一是如何在保持重建图像中病灶边缘特性的同时具有良好的去噪性能.针对此问题,本文提出了一种结合图拉普拉斯正则化和深度图像先验的PET图像核重建方法 .设计了改进的U-net神经网络,将PET前向投影模型中的核系数表示为神经网络的输出;通过先验图像构建图拉普拉斯矩阵,重建问题被建模为基于神经网络的带图拉普拉斯正则化项的最大似然函数优化问题.利用优化转移方法导出了收敛的迭代重建算法,每一次迭代包括由核重建方法更新图像和利用神经网络更新核系数两个步骤.仿真和临床实验结果表明,本文提出的方法在不同的指标下都有更好的重建效果,优于已有核重建方法以及最新的基于深度系数先验的重建方法 . 展开更多
关键词 PET 图像重建 核方法 深度图像先验 图拉普拉斯正则化
下载PDF
KENN:线性结构熵的图核神经网络
8
作者 徐立祥 许巍 +2 位作者 陈恩红 罗斌 唐远炎 《软件学报》 EI CSCD 北大核心 2024年第5期2430-2445,共16页
图神经网络(graph neural network,GNN)是一种利用深度学习直接对图结构数据进行表征的框架,近年来受到人们越来越多的关注.然而传统的基于消息传递聚合的图神经网络(messaging passing GNN,MP-GNN)忽略了不同节点的平滑速度,无差别地... 图神经网络(graph neural network,GNN)是一种利用深度学习直接对图结构数据进行表征的框架,近年来受到人们越来越多的关注.然而传统的基于消息传递聚合的图神经网络(messaging passing GNN,MP-GNN)忽略了不同节点的平滑速度,无差别地聚合了邻居信息,易造成过平滑现象.为此,研究并提出一种线性结构熵的图核神经网络分类方法,即KENN.它首先利用图核方法对节点子图进行结构编码,判断子图之间的同构性,进而利用同构系数来定义不同邻居间的平滑系数.其次基于低复杂度的线性结构熵提取图的结构信息,加深和丰富图数据的结构表达能力.通过将线性结构熵、图核和图神经网络三者进行深度融合提出了图核神经网络分类方法.它不仅可以解决生物分子数据节点特征的稀疏问题,也可以解决社交网络数据以节点度作为特征所产生的信息冗余问题,同时还使得图神经网络能够自适应调整对图结构特征的表征能力,使其超越MP-GNN的上界(WL测试).最后,在7个公开的图分类数据集上实验验证了所提出模型的性能优于其他的基准模型. 展开更多
关键词 图分类 结构熵 图核 消息传递聚合 图神经网络
下载PDF
基于时空多图融合的交通流量预测
9
作者 顾焰杰 张英俊 +2 位作者 刘晓倩 周围 孙威 《计算机应用》 CSCD 北大核心 2024年第8期2618-2625,共8页
交通预测是智能交通系统(ITS)的核心任务,准确的交通流量预测(TFF)可以大幅提高公共资源的利用效率。针对现有多图神经网络模型对上下文信息使用不足、图融合方法不平衡和只考虑静态空间关系等问题,提出基于时空多图融合(STMGF)的TFF模... 交通预测是智能交通系统(ITS)的核心任务,准确的交通流量预测(TFF)可以大幅提高公共资源的利用效率。针对现有多图神经网络模型对上下文信息使用不足、图融合方法不平衡和只考虑静态空间关系等问题,提出基于时空多图融合(STMGF)的TFF模型。首先,通过融合空间图、语义图和空间语义图提取不同区域的不同空间相关性,并利用空间注意力机制和图注意力机制融合不同的图结构以动态学习不同邻居的重要性;然后,使用多核时间注意力机制同时捕获局部时间依赖性和全局时间依赖性;最后,使用多层感知机预测交通流量,得到最终预测值。在NYCTaxi和NYCBike数据集验证模型的有效性。实验结果表明,在NYCBike数据集的36步预测任务中,与时空图卷积神经网络(STGCN)、基于时空注意力的图神经网络(ASTGNN)、元图卷积递归网络(MegaCRN)相比,所提模型的均方根误差(RMSE)分别降低了8.46%、2.70%和2.20%。 展开更多
关键词 多图融合 多核注意力 空间注意力 图注意力 深度学习
下载PDF
面向全量测点耦合结构分析与估计的工业过程监测方法
10
作者 赵健程 赵春晖 《自动化学报》 EI CAS CSCD 北大核心 2024年第8期1517-1538,共22页
实际工业场景中,需要在生产过程中收集大量测点的数据,从而掌握生产过程运行状态.传统的过程监测方法通常仅评估运行状态整体的异常与否,或对运行状态进行分级评估,这种方式并不会直接定位故障部位,不利于故障的高效检修.为此,提出一种... 实际工业场景中,需要在生产过程中收集大量测点的数据,从而掌握生产过程运行状态.传统的过程监测方法通常仅评估运行状态整体的异常与否,或对运行状态进行分级评估,这种方式并不会直接定位故障部位,不利于故障的高效检修.为此,提出一种基于全量测点估计的监测模型,根据全量测点估计值与实际值的偏差定义监测指标,从而实现全量测点的分别精准监测.为克服原有的基于工况估计的监测方法监测不全面且对测点间耦合关系建模不充分的问题,提出多核图卷积网络(Multi-kernel graph convolutional network,MKGCN),通过将全量传感器测点视为一张全量测点图,显式地对测点间耦合关系进行建模,从而实现全量传感器测点的同步工况估计.此外,面向在线监测场景,设计基于特征逼近的自迭代方法,从而克服在异常情况下由于测点间强耦合导致的部分测点估计值异常的问题.所提出的方法在电厂百万千瓦超超临界机组中引风机的实际数据上进行验证,结果显示,与其他典型方法相比,所提出的监测方法能够更精准地检测出发生故障的测点. 展开更多
关键词 自迭代特征替换 多核图卷积网络 全量测点估计 故障检测
下载PDF
基于超图的阿尔茨海默病辅助诊断研究现状与进展
11
作者 张馨文 毕春慧 +2 位作者 董泰歌 李佳霓 信俊昌 《阿尔茨海默病及相关病杂志》 2024年第1期64-71,共8页
阿尔茨海默病(Alzheimer's Disease,AD)等神经变性疾病普遍存在,记忆危机日益严重,因此对于早期AD辅助诊断的需求十分迫切。医学影像技术是前期辅助AD筛查的一种有效手段,其中超图在对AD分类任务中表现突出。在超图中,超边可以连接... 阿尔茨海默病(Alzheimer's Disease,AD)等神经变性疾病普遍存在,记忆危机日益严重,因此对于早期AD辅助诊断的需求十分迫切。医学影像技术是前期辅助AD筛查的一种有效手段,其中超图在对AD分类任务中表现突出。在超图中,超边可以连接多个节点,这使得超图更适用于表示复杂的关系和结构。在医学影像技术中,超图能够更加准确地建模多元关系,具备较强的数据样本间非线性高阶关联的刻画和挖掘能力。汇总了基于脑功能超网络的研究成果,重点介绍了图核、矩阵分析、深度学习这3种方法,最后对未来的发展进行展望,为后续研究提供参考。 展开更多
关键词 阿尔茨海默病 超图 图核 矩阵分析 深度学习
下载PDF
基于通道剪枝的轻量化空气质量检测方法
12
作者 崔雅博 窦小楠 +1 位作者 王昆 刘丽娜 《仪表技术与传感器》 CSCD 北大核心 2024年第4期90-94,121,共6页
针对传统空气质量检测系统结构复杂、部署困难以及成本较高的问题,利用图卷积网络对大气图像特征进行分析,提出了一种基于通道剪枝的轻量化空气质量检测算法。首先以ResNet50为基础网络训练一个PM 2.5指数检测网络,实现了空气质量初步... 针对传统空气质量检测系统结构复杂、部署困难以及成本较高的问题,利用图卷积网络对大气图像特征进行分析,提出了一种基于通道剪枝的轻量化空气质量检测算法。首先以ResNet50为基础网络训练一个PM 2.5指数检测网络,实现了空气质量初步的自动化检测。然后对网络模型中的所有卷积核通道和相关的参数传递进行图节点核权重边建模,以图表示形式输入GCN,并输出针对每个卷积核节点的剪枝重要性判别预测。最后根据GCN结果进行通道剪枝,使用原始数据集对剪枝后模型的参数进行微调,在保持网络检测精准度的情况下,实现网络模型的轻量化。通过对比实验和消融实验验证了提出的检测方法具有较高的检测精度,平均检测误差仅有5.31%,RMSE提升了0.52,R-square仅降低了0.018,解决了网络模型的参数量和计算量过大的问题,网络参数量从4.12×10^(7)降低至2.01×10^(7),FPS从16.78帧/s提升至30.9帧/s,为在便携式终端上实现空气质量检测任务提供了有力的技术支持。 展开更多
关键词 空气质量检测 大气图像 通道剪枝 卷积核通道 图卷积网络 网络轻量化
下载PDF
基于结构感知的多图学习方法
13
作者 付东来 高泽安 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2407-2417,共11页
多图学习是一种非常重要的学习范式.与多示例学习相比,在多图学习中包表示一个对象,包中的每一个图对应一个子对象.这种数据表示方法能够表达子对象的结构信息.但是,现有的多图学习方法不仅隐含假设包内的图满足独立同分布,而且多采用... 多图学习是一种非常重要的学习范式.与多示例学习相比,在多图学习中包表示一个对象,包中的每一个图对应一个子对象.这种数据表示方法能够表达子对象的结构信息.但是,现有的多图学习方法不仅隐含假设包内的图满足独立同分布,而且多采用将多图学习问题转变为多示例学习问题的技术思路.这类多图学习方法容易损失图自身及图间的结构信息.针对上述问题,本文提出一种基于结构感知的多图学习方法,有效学习图自身和图间的结构信息.该方法利用图核,通过计算图之间的相似度保留图自身的结构信息,通过生成包级图表达图间的结构信息,并且设计包编码器有效学习图间的结构信息.在NCI(1)、NCI(109)和AIDB三个多图数据集上的实验结果表明,所提方法相较于现有方法在准确率、精确率、F1值和AUC上分别平均提高了5.97%、3.44%、4.48%和2.56%,在召回率上平均降低了2.12%. 展开更多
关键词 多图学习 图核 结构信息 包结构图 独立同分布
下载PDF
基于图注意力网络预测人类微生物与药物关联
14
作者 史赛如 孔舒 张冀 《数理医药学杂志》 CAS 2024年第2期81-90,共10页
目的采用图注意力网络(graph attention network,GAT)预测人类微生物与药物之间的潜在关联。方法选取三个常用的微生物-药物关联(microbe-drug associations,MDA)数据集(MDAD、aBiofilm和Drug Virus),基于数据集中丰富的生物信息构建一... 目的采用图注意力网络(graph attention network,GAT)预测人类微生物与药物之间的潜在关联。方法选取三个常用的微生物-药物关联(microbe-drug associations,MDA)数据集(MDAD、aBiofilm和Drug Virus),基于数据集中丰富的生物信息构建一个异构网络,并提出一种基于GAT框架预测MDA的模型——GATMDA模型,用于预测微生物与药物间的关联。结果与现有的8种预测方法相比,GATMDA通过三种交叉验证方法在三个数据集上具有较好的预测效果。在5折交叉验证的性能评估中,在三个数据集上的受试者工作特征曲线下的面积(area under the curve,AUC)分别为0.9886、0.9941和0.9836,精确率-召回率曲线下的面积(area under the precision-recall curve,AUPR)分别为0.9667、0.9869和0.8795。通过病例研究进一步验证了GATMDA在预测MDA方面的有效性。结论基于GAT,GATMDA模型可以通过构建的异构网络对微生物-药物进行有效的关联预测。 展开更多
关键词 微生物-药物关联 多核融合 图注意力网络 异构网络 交叉验证
下载PDF
图核函数研究现状与进展 被引量:6
15
作者 白璐 徐立祥 +3 位作者 崔丽欣 焦宇航 吴宇帆 潘云逸 《安徽大学学报(自然科学版)》 CAS 北大核心 2017年第1期21-28,共8页
核方法具有坚实的理论基础和广泛的应用,已引起了各领域的关注.基于核的机器学习方法不仅适用于以特征向量表示的模式,也适用于结构化数据的模式.前者对应的是向量核方法,后者对应的是图核方法.图核对结构化数据具有强大而灵活的表示形... 核方法具有坚实的理论基础和广泛的应用,已引起了各领域的关注.基于核的机器学习方法不仅适用于以特征向量表示的模式,也适用于结构化数据的模式.前者对应的是向量核方法,后者对应的是图核方法.图核对结构化数据具有强大而灵活的表示形式,其不仅能描述研究对象或模式的特性,还能反映构成这个物体不同部分之间的结构信息.目前,基于图核的机器学习方法在模式识别、机器学习、机器视觉、数据挖掘等相关研究领域得到了极为广泛的关注与应用,已成为结构数据描述方法和应用领域的一个重要研究方向.论文从使用最为广泛的基于R-convolution的图核谈起,总结了图核研究的意义,着重回顾和讨论图核函数的基本理论、基本分类、国内外研究现状,并进一步指出图核研究的发展方向. 展开更多
关键词 结构化 图核 机器学习
下载PDF
基于核图割模型的肝脏CT图像肿瘤分割 被引量:4
16
作者 杨柳 陈永林 +2 位作者 王翊 谭立文 陈伟 《计算机工程》 CAS CSCD 2014年第3期238-243,共6页
计算机断层成像(CT)对疾病的确诊意义重大,在医学图像的自动检测中应用较多的模型为图割模型,但传统图割算法严重依赖于对复杂区域进行大量建立的模型,运算复杂且不利推广。为此,在传统图割理论基础上引入核函数,提出一种基于核图割模... 计算机断层成像(CT)对疾病的确诊意义重大,在医学图像的自动检测中应用较多的模型为图割模型,但传统图割算法严重依赖于对复杂区域进行大量建立的模型,运算复杂且不利推广。为此,在传统图割理论基础上引入核函数,提出一种基于核图割模型的肝脏CT图像肿瘤分割算法。通过核函数将原始数据映射到高维空间,并在高维图像数据空间用图割理论对CT图像的肝区与肿瘤区域进行分割,以提取疑似肿瘤区域,解决传统图割模型中需要依赖人机交互和对复杂区域建模困难等问题。由Mercer定理得出,核空间的点积运算不需要显式指定图像各区域的具体模型,进行核推广后克服了传统模型通用性不强的弱点。利用临床CT图像数据对该算法进行分割实验,结果表明,基于核推广后的图割算法能够有效对肿瘤和肝区进行分离,可应用于临床实际中作为肿瘤辅助诊断手段。 展开更多
关键词 图割 核图割 肿瘤分割 肝脏分割 医学图像分割
下载PDF
面向脑网络的新型图核及其在MCI分类上的应用 被引量:9
17
作者 接标 张道强 《计算机学报》 EI CSCD 北大核心 2016年第8期1667-1680,共14页
作为一种图的相似性度量,图核已经被提出用于计算脑网络的相似性,并用于分类一些脑疾病,如阿尔茨海默病(Alzheimer’s Disease,AD)以及它的早期阶段,即轻度认知功能障碍(Mild Cognitive Impairment,MCI).然而,已有图核主要面向一般图而... 作为一种图的相似性度量,图核已经被提出用于计算脑网络的相似性,并用于分类一些脑疾病,如阿尔茨海默病(Alzheimer’s Disease,AD)以及它的早期阶段,即轻度认知功能障碍(Mild Cognitive Impairment,MCI).然而,已有图核主要面向一般图而构建,从而忽略了脑网络自身特有的特性,如节点的唯一性(即每个节点对应着唯一的脑区),这可能影响到脑网络分析(分类)性能.为了解决这个问题,构建一种面向脑网络的图核,用于测量一对脑网络的相似性.具体而言就是:首先,以网络中每一个节点为中心,构建一组子网络来反映网络的局部多层次拓扑特性.而后,利用节点的唯一性,构建测量每对子网组之间相似性函数,从而获得用于测量一对脑网络的相似性的图核.不同于已有的图核,提出的图核充分考虑到脑网络自身特有的特性,以及保留了脑网络局部连接特性.在两个真实的MCI数据集上,实验结果表明,相对于现阶段的图核,文中提出的图核能够显著提高分类的性能. 展开更多
关键词 阿尔茨海默病 轻度认知功能障碍 脑网络分析 图核 分类
下载PDF
基于优先图的本体相似度计算 被引量:5
18
作者 兰美辉 徐坚 高炜 《科学技术与工程》 北大核心 2014年第28期252-255,共4页
本体概念的相似度计算是信息检索的重要研究课题。通过优先图的构造和核函数方法得到关于排序代价函数的正则平方最小框架,利用表示理论得到模型的解,从而将原本体图映射到实直线,原本体图中每个顶点映射到对应实数。原本体图中概念之... 本体概念的相似度计算是信息检索的重要研究课题。通过优先图的构造和核函数方法得到关于排序代价函数的正则平方最小框架,利用表示理论得到模型的解,从而将原本体图映射到实直线,原本体图中每个顶点映射到对应实数。原本体图中概念之间的相似度通过它们对应实数间的差值来判定。将该算法分别应用于计算机和生物本体,实验数据表明新算法有较高的P@N命中率。 展开更多
关键词 本体 相似度计算 排序 优先图 核方法
下载PDF
用于图分类的组合维核方法 被引量:7
19
作者 李宇峰 郭天佑 周志华 《计算机学报》 EI CSCD 北大核心 2009年第5期946-952,共7页
对图等内含结构信息的数据进行学习,是机器学习领域的一个重要问题.核方法是解决此类问题的一种有效技术.文中针对分子图分类问题,基于Swamidass等人的工作,提出用于图分类的组合维核方法.该方法首先构建融合一维信息的二维核来刻画分... 对图等内含结构信息的数据进行学习,是机器学习领域的一个重要问题.核方法是解决此类问题的一种有效技术.文中针对分子图分类问题,基于Swamidass等人的工作,提出用于图分类的组合维核方法.该方法首先构建融合一维信息的二维核来刻画分子化学特征,然后基于分子力学的相关知识,利用几何信息构建三维核来刻画分子物理性质.在此基础上对不同维度的核进行集成,通过求解二次约束二次规划问题来获得最优核组合.实验结果表明,文中方法比现有技术具有更好的性能. 展开更多
关键词 机器学习 图分类 核方法 结构信息 集成学习
下载PDF
基于核化图嵌入的最佳鉴别分析与人脸识别 被引量:27
20
作者 卢桂馥 林忠 金忠 《软件学报》 EI CSCD 北大核心 2011年第7期1561-1570,共10页
将压缩映射和同构映射引入核化图嵌入框架(kernel extension of graph embedding,简称KGE),从理论上证明了KGE框架内的各种核算法其实质是KPCA(kernel principal component analysis)+LGE(linear extension of graph embedding,简称LGE... 将压缩映射和同构映射引入核化图嵌入框架(kernel extension of graph embedding,简称KGE),从理论上证明了KGE框架内的各种核算法其实质是KPCA(kernel principal component analysis)+LGE(linear extension of graph embedding,简称LGE)框架内的线性降维算法,并且基于所给出的理论框架提出了一种综合利用零空间和非零空间鉴别信息的组合方法.任何一种可以用核化图嵌入框架描述的核算法,都可以有相应的组合方法.在ORL,Yale,FERET和PIE人脸数据库上验证了所提出的理论和方法的有效性. 展开更多
关键词 核化图嵌入 最优鉴别矢量 核主成分分析 特征抽取 人脸识别
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部