期刊文献+
共找到1,828篇文章
< 1 2 92 >
每页显示 20 50 100
An End-To-End Hyperbolic Deep Graph Convolutional Neural Network Framework
1
作者 Yuchen Zhou Hongtao Huo +5 位作者 Zhiwen Hou Lingbin Bu Yifan Wang Jingyi Mao Xiaojun Lv Fanliang Bu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期537-563,共27页
Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to sca... Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements. 展开更多
关键词 graph neural networks hyperbolic graph convolutional neural networks deep graph convolutional neural networks message passing framework
下载PDF
Heterophilic Graph Neural Network Based on Spatial and Frequency Domain Adaptive Embedding Mechanism
2
作者 Lanze Zhang Yijun Gu Jingjie Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1701-1731,共31页
Graph Neural Networks(GNNs)play a significant role in tasks related to homophilic graphs.Traditional GNNs,based on the assumption of homophily,employ low-pass filters for neighboring nodes to achieve information aggre... Graph Neural Networks(GNNs)play a significant role in tasks related to homophilic graphs.Traditional GNNs,based on the assumption of homophily,employ low-pass filters for neighboring nodes to achieve information aggregation and embedding.However,in heterophilic graphs,nodes from different categories often establish connections,while nodes of the same category are located further apart in the graph topology.This characteristic poses challenges to traditional GNNs,leading to issues of“distant node modeling deficiency”and“failure of the homophily assumption”.In response,this paper introduces the Spatial-Frequency domain Adaptive Heterophilic Graph Neural Networks(SFA-HGNN),which integrates adaptive embedding mechanisms for both spatial and frequency domains to address the aforementioned issues.Specifically,for the first problem,we propose the“Distant Spatial Embedding Module”,aiming to select and aggregate distant nodes through high-order randomwalk transition probabilities to enhance modeling capabilities.For the second issue,we design the“Proximal Frequency Domain Embedding Module”,constructing adaptive filters to separate high and low-frequency signals of nodes,and introduce frequency-domain guided attention mechanisms to fuse the relevant information,thereby reducing the noise introduced by the failure of the homophily assumption.We deploy the SFA-HGNN on six publicly available heterophilic networks,achieving state-of-the-art results in four of them.Furthermore,we elaborate on the hyperparameter selection mechanism and validate the performance of each module through experimentation,demonstrating a positive correlation between“node structural similarity”,“node attribute vector similarity”,and“node homophily”in heterophilic networks. 展开更多
关键词 Heterophilic graph graph neural network graph representation learning failure of the homophily assumption
下载PDF
Model Agnostic Meta-Learning(MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks
3
作者 Yasir Maqsood Syed Muhammad Usman +3 位作者 Musaed Alhussein Khursheed Aurangzeb Shehzad Khalid Muhammad Zubair 《Computers, Materials & Continua》 SCIE EI 2024年第5期2795-2811,共17页
Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di... Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed. 展开更多
关键词 Wheat disease detection deep learning vision transformer graph neural network model agnostic meta learning
下载PDF
The Short-Term Prediction ofWind Power Based on the Convolutional Graph Attention Deep Neural Network
4
作者 Fan Xiao Xiong Ping +4 位作者 Yeyang Li Yusen Xu Yiqun Kang Dan Liu Nianming Zhang 《Energy Engineering》 EI 2024年第2期359-376,共18页
The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key... The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key role in improving the safety and economic benefits of the power grid.This paper proposes a wind power predicting method based on a convolutional graph attention deep neural network with multi-wind farm data.Based on the graph attention network and attention mechanism,the method extracts spatial-temporal characteristics from the data of multiple wind farms.Then,combined with a deep neural network,a convolutional graph attention deep neural network model is constructed.Finally,the model is trained with the quantile regression loss function to achieve the wind power deterministic and probabilistic prediction based on multi-wind farm spatial-temporal data.A wind power dataset in the U.S.is taken as an example to demonstrate the efficacy of the proposed model.Compared with the selected baseline methods,the proposed model achieves the best prediction performance.The point prediction errors(i.e.,root mean square error(RMSE)and normalized mean absolute percentage error(NMAPE))are 0.304 MW and 1.177%,respectively.And the comprehensive performance of probabilistic prediction(i.e.,con-tinuously ranked probability score(CRPS))is 0.580.Thus,the significance of multi-wind farm data and spatial-temporal feature extraction module is self-evident. 展开更多
关键词 Format wind power prediction deep neural network graph attention network attention mechanism quantile regression
下载PDF
Multi-Head Attention Spatial-Temporal Graph Neural Networks for Traffic Forecasting
5
作者 Xiuwei Hu Enlong Yu Xiaoyu Zhao 《Journal of Computer and Communications》 2024年第3期52-67,共16页
Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction acc... Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods. 展开更多
关键词 Traffic Prediction Intelligent Traffic System Multi-Head Attention graph neural networks
下载PDF
Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems
6
作者 Sang-min Lee Namgi Kim 《Computers, Materials & Continua》 SCIE EI 2024年第2期1897-1914,共18页
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ... Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets. 展开更多
关键词 Deep learning graph neural network graph convolution network graph convolution network model learning method recommender information systems
下载PDF
Binary Program Vulnerability Mining Based on Neural Network
7
作者 Zhenhui Li Shuangping Xing +5 位作者 Lin Yu Huiping Li Fan Zhou Guangqiang Yin Xikai Tang Zhiguo Wang 《Computers, Materials & Continua》 SCIE EI 2024年第2期1861-1879,共19页
Software security analysts typically only have access to the executable program and cannot directly access the source code of the program.This poses significant challenges to security analysis.While it is crucial to i... Software security analysts typically only have access to the executable program and cannot directly access the source code of the program.This poses significant challenges to security analysis.While it is crucial to identify vulnerabilities in such non-source code programs,there exists a limited set of generalized tools due to the low versatility of current vulnerability mining methods.However,these tools suffer from some shortcomings.In terms of targeted fuzzing,the path searching for target points is not streamlined enough,and the completely random testing leads to an excessively large search space.Additionally,when it comes to code similarity analysis,there are issues with incomplete code feature extraction,which may result in information loss.In this paper,we propose a cross-platform and cross-architecture approach to exploit vulnerabilities using neural network obfuscation techniques.By leveraging the Angr framework,a deobfuscation technique is introduced,along with the adoption of a VEX-IR-based intermediate language conversion method.This combination allows for the unified handling of binary programs across various architectures,compilers,and compilation options.Subsequently,binary programs are processed to extract multi-level spatial features using a combination of a skip-gram model with self-attention mechanism and a bidirectional Long Short-Term Memory(LSTM)network.Finally,the graph embedding network is utilized to evaluate the similarity of program functionalities.Based on these similarity scores,a target function is determined,and symbolic execution is applied to solve the target function.The solved content serves as the initial seed for targeted fuzzing.The binary program is processed by using the de-obfuscation technique and intermediate language transformation method,and then the similarity of program functions is evaluated by using a graph embedding network,and symbolic execution is performed based on these similarity scores.This approach facilitates cross-architecture analysis of executable programs without their source codes and concurrently reduces the risk of symbolic execution path explosion. 展开更多
关键词 Vulnerability mining de-obfuscation neural network graph embedding network symbolic execution
下载PDF
Learning to Branch in Combinatorial Optimization With Graph Pointer Networks
8
作者 Rui Wang Zhiming Zhou +4 位作者 Kaiwen Li Tao Zhang Ling Wang Xin Xu Xiangke Liao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期157-169,共13页
Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well wi... Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well with complex problems.Given the frequent need to solve varied combinatorial optimization problems, leveraging statistical learning to auto-tune B&B algorithms for specific problem classes becomes attractive. This paper proposes a graph pointer network model to learn the branch rules. Graph features, global features and historical features are designated to represent the solver state. The graph neural network processes graph features, while the pointer mechanism assimilates the global and historical features to finally determine the variable on which to branch. The model is trained to imitate the expert strong branching rule by a tailored top-k Kullback-Leibler divergence loss function. Experiments on a series of benchmark problems demonstrate that the proposed approach significantly outperforms the widely used expert-designed branching rules. It also outperforms state-of-the-art machine-learning-based branch-and-bound methods in terms of solving speed and search tree size on all the test instances. In addition, the model can generalize to unseen instances and scale to larger instances. 展开更多
关键词 Branch-and-bound(B&B) combinatorial optimization deep learning graph neural network imitation learning
下载PDF
Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction
9
作者 Chuyuan Wei Jinzhe Li +2 位作者 Zhiyuan Wang Shanshan Wan Maozu Guo 《Computers, Materials & Continua》 SCIE EI 2024年第5期3299-3314,共16页
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,... Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous. 展开更多
关键词 Relation extraction graph convolutional neural networks dependency tree dynamic structure attention
下载PDF
Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification 被引量:1
10
作者 Ding Yao Zhang Zhi-li +4 位作者 Zhao Xiao-feng Cai Wei He Fang Cai Yao-ming Wei-Wei Cai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期164-176,共13页
With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and th... With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models. 展开更多
关键词 graph neural network Hyperspectral image classification Deep hybrid network
下载PDF
Smart Lung Tumor Prediction Using Dual Graph Convolutional Neural Network 被引量:1
11
作者 Abdalla Alameen 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期369-383,共15页
A significant advantage of medical image processing is that it allows non-invasive exploration of internal anatomy in great detail.It is possible to create and study 3D models of anatomical structures to improve treatm... A significant advantage of medical image processing is that it allows non-invasive exploration of internal anatomy in great detail.It is possible to create and study 3D models of anatomical structures to improve treatment outcomes,develop more effective medical devices,or arrive at a more accurate diagnosis.This paper aims to present a fused evolutionary algorithm that takes advantage of both whale optimization and bacterial foraging optimization to optimize feature extraction.The classification process was conducted with the aid of a convolu-tional neural network(CNN)with dual graphs.Evaluation of the performance of the fused model is carried out with various methods.In the initial input Com-puter Tomography(CT)image,150 images are pre-processed and segmented to identify cancerous and non-cancerous nodules.The geometrical,statistical,struc-tural,and texture features are extracted from the preprocessed segmented image using various methods such as Gray-level co-occurrence matrix(GLCM),Histo-gram-oriented gradient features(HOG),and Gray-level dependence matrix(GLDM).To select the optimal features,a novel fusion approach known as Whale-Bacterial Foraging Optimization is proposed.For the classification of lung cancer,dual graph convolutional neural networks have been employed.A com-parison of classification algorithms and optimization algorithms has been con-ducted.According to the evaluated results,the proposed fused algorithm is successful with an accuracy of 98.72%in predicting lung tumors,and it outper-forms other conventional approaches. 展开更多
关键词 CNN dual graph convolutional neural network GLCM GLDM HOG image processing lung tumor prediction whale bacterial foraging optimization
下载PDF
Modeling Price-Aware Session-Based Recommendation Based on Graph Neural Network
12
作者 Jian Feng Yuwen Wang Shaojian Chen 《Computers, Materials & Continua》 SCIE EI 2023年第7期397-413,共17页
Session-based Recommendation(SBR)aims to accurately recom-mend a list of items to users based on anonymous historical session sequences.Existing methods for SBR suffer from several limitations:SBR based on Graph Neura... Session-based Recommendation(SBR)aims to accurately recom-mend a list of items to users based on anonymous historical session sequences.Existing methods for SBR suffer from several limitations:SBR based on Graph Neural Network often has information loss when constructing session graphs;Inadequate consideration is given to influencing factors,such as item price,and users’dynamic interest evolution is not taken into account.A new session recommendation model called Price-aware Session-based Recommendation(PASBR)is proposed to address these limitations.PASBR constructs session graphs by information lossless approaches to fully encode the original session information,then introduces item price as a new factor and models users’price tolerance for various items to influence users’preferences.In addition,PASBR proposes a new method to encode user intent at the item category level and tries to capture the dynamic interest of users over time.Finally,PASBR fuses the multi-perspective features to generate the global representation of users and make a prediction.Specifically,the intent,the short-term and long-term interests,and the dynamic interests of a user are combined.Experiments on two real-world datasets show that PASBR can outperform representative baselines for SBR. 展开更多
关键词 Session-based recommendation graph neural network price-aware intention dynamic interest
下载PDF
Identification of Anomaly Scenes in Videos Using Graph Neural Networks
13
作者 Khalid Masood Mahmoud M.Al-Sakhnini +3 位作者 Waqas Nawaz Tauqeer Faiz Abdul Salam Mohammad Hamza Kashif 《Computers, Materials & Continua》 SCIE EI 2023年第3期5417-5430,共14页
Generally,conventional methods for anomaly detection rely on clustering,proximity,or classification.With themassive growth in surveillance videos,outliers or anomalies find ingenious ways to obscure themselves in the ... Generally,conventional methods for anomaly detection rely on clustering,proximity,or classification.With themassive growth in surveillance videos,outliers or anomalies find ingenious ways to obscure themselves in the network and make conventional techniques inefficient.This research explores the structure of Graph neural networks(GNNs)that generalize deep learning frameworks to graph-structured data.Every node in the graph structure is labeled and anomalies,represented by unlabeled nodes,are predicted by performing random walks on the node-based graph structures.Due to their strong learning abilities,GNNs gained popularity in various domains such as natural language processing,social network analytics and healthcare.Anomaly detection is a challenging task in computer vision but the proposed algorithm using GNNs efficiently performs the identification of anomalies.The Graph-based deep learning networks are designed to predict unknown objects and outliers.In our case,they detect unusual objects in the form of malicious nodes.The edges between nodes represent a relationship of nodes among each other.In case of anomaly,such as the bike rider in Pedestrians data,the rider node has a negative value for the edge and it is identified as an anomaly.The encoding and decoding layers are crucial for determining how statistical measurements affect anomaly identification and for correcting the graph path to the best possible outcome.Results show that the proposed framework is a step ahead of the traditional approaches in detecting unusual activities,which shows a huge potential in automatically monitoring surveillance videos.Performing autonomous monitoring of CCTV,crime control and damage or destruction by a group of people or crowd can be identified and alarms may be triggered in unusual activities in streets or public places.The suggested GNN model improves accuracy by 4%for the Pedestrian 2 dataset and 12%for the Pedestrian 1 dataset compared to a few state-of the-art techniques. 展开更多
关键词 graph neural network deep learning anomaly detection auto encoders
下载PDF
Log Anomaly Detection Based on Hierarchical Graph Neural Network and Label Contrastive Coding
14
作者 Yong Fang Zhiying Zhao +1 位作者 Yijia Xu Zhonglin Liu 《Computers, Materials & Continua》 SCIE EI 2023年第2期4099-4118,共20页
System logs are essential for detecting anomalies,querying faults,and tracing attacks.Because of the time-consuming and labor-intensive nature of manual system troubleshooting and anomaly detection,it cannot meet the ... System logs are essential for detecting anomalies,querying faults,and tracing attacks.Because of the time-consuming and labor-intensive nature of manual system troubleshooting and anomaly detection,it cannot meet the actual needs.The implementation of automated log anomaly detection is a topic that demands urgent research.However,the prior work on processing log data is mainly one-dimensional and cannot profoundly learn the complex associations in log data.Meanwhile,there is a lack of attention to the utilization of log labels and usually relies on a large number of labels for detection.This paper proposes a novel and practical detection model named LCC-HGLog,the core of which is the conversion of log anomaly detection into a graph classification problem.Semantic temporal graphs(STG)are constructed by extracting the raw logs’execution sequences and template semantics.Then a unique graph classifier is used to better comprehend each STG’s semantic,sequential,and structural features.The classification model is trained jointly by graph classification loss and label contrastive loss.While achieving discriminability at the class-level,it increases the fine-grained identification at the instance-level,thus achieving detection performance even with a small amount of labeled data.We have conducted numerous experiments on real log datasets,showing that the proposed model outperforms the baseline methods and obtains the best all-around performance.Moreover,the detection performance degrades to less than 1%when only 10%of the labeled data is used.With 200 labeled samples,we can achieve the same or better detection results than the baseline methods. 展开更多
关键词 Log analysis anomaly detection contrastive learning graph neural network
下载PDF
Lateral interaction by Laplacian‐based graph smoothing for deep neural networks
15
作者 Jianhui Chen Zuoren Wang Cheng‐Lin Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1590-1607,共18页
Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modalit... Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modality can be used.Some approaches directly incorporate SOM learning rules into neural networks,but incur complex operations and poor extendibility.The efficient way to implement lateral interaction in deep neural networks is not well established.The use of Laplacian Matrix‐based Smoothing(LS)regularisation is proposed for implementing lateral interaction in a concise form.The authors’derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS‐regulated k‐means,and they both show the topology‐preserving capability.The authors also verify that LS‐regularisation can be used in conjunction with the end‐to‐end training paradigm in deep auto‐encoders.Additionally,the benefits of LS‐regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated.Furthermore,the topologically ordered structure introduced by LS‐regularisation in feature extractor can improve the generalisation performance on classification tasks.Overall,LS‐regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models. 展开更多
关键词 artificial neural networks biologically plausible Laplacian‐based graph smoothing lateral interaction machine learning
下载PDF
Application of graph neural network and feature information enhancement in relation inference of sparse knowledge graph
16
作者 Hai-Tao Jia Bo-Yang Zhang +4 位作者 Chao Huang Wen-Han Li Wen-Bo Xu Yu-Feng Bi Li Ren 《Journal of Electronic Science and Technology》 EI CAS CSCD 2023年第2期44-54,共11页
At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production ... At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production environments,there are a large number of KGs with a small number of entities and relations,which are called sparse KGs.Limited by the performance of knowledge extraction methods or some other reasons(some common-sense information does not appear in the natural corpus),the relation between entities is often incomplete.To solve this problem,a method of the graph neural network and information enhancement is proposed.The improved method increases the mean reciprocal rank(MRR)and Hit@3 by 1.6%and 1.7%,respectively,when the sparsity of the FB15K-237 dataset is 10%.When the sparsity is 50%,the evaluation indexes MRR and Hit@10 are increased by 0.8%and 1.8%,respectively. 展开更多
关键词 Feature information enhancement graph neural network Natural language processing Sparse knowledge graph(KG)inference
下载PDF
A Graph Neural Network Recommendation Based on Long-and Short-Term Preference
17
作者 Bohuai Xiao Xiaolan Xie Chengyong Yang 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期3067-3082,共16页
The recommendation system(RS)on the strength of Graph Neural Networks(GNN)perceives a user-item interaction graph after collecting all items the user has interacted with.Afterward the RS performs neighborhood aggregat... The recommendation system(RS)on the strength of Graph Neural Networks(GNN)perceives a user-item interaction graph after collecting all items the user has interacted with.Afterward the RS performs neighborhood aggregation on the graph to generate long-term preference representations for the user in quick succession.However,user preferences are dynamic.With the passage of time and some trend guidance,users may generate some short-term preferences,which are more likely to lead to user-item interactions.A GNN recommendation based on long-and short-term preference(LSGNN)is proposed to address the above problems.LSGNN consists of four modules,using a GNN combined with the attention mechanism to extract long-term preference features,using Bidirectional Encoder Representation from Transformers(BERT)and the attention mechanism combined with Bi-Directional Gated Recurrent Unit(Bi-GRU)to extract short-term preference features,using Convolutional Neural Network(CNN)combined with the attention mechanism to add title and description representations of items,finally inner-producing long-term and short-term preference features as well as features of items to achieve recommendations.In experiments conducted on five publicly available datasets from Amazon,LSGNN is superior to state-of-the-art personalized recommendation techniques. 展开更多
关键词 Recommendation systems graph neural networks deep learning data mining
下载PDF
GNNSched:面向GPU的图神经网络推理任务调度框架 被引量:1
18
作者 孙庆骁 刘轶 +4 位作者 杨海龙 王一晴 贾婕 栾钟治 钱德沛 《计算机工程与科学》 CSCD 北大核心 2024年第1期1-11,共11页
由于频繁的显存访问,图神经网络GNN在GPU上运行时往往资源利用率较低。现有的推理框架由于没有考虑GNN输入的不规则性,直接适用到GNN进行推理任务共置时可能会超出显存容量导致任务失败。对于GNN推理任务,需要根据其输入特点预先分析并... 由于频繁的显存访问,图神经网络GNN在GPU上运行时往往资源利用率较低。现有的推理框架由于没有考虑GNN输入的不规则性,直接适用到GNN进行推理任务共置时可能会超出显存容量导致任务失败。对于GNN推理任务,需要根据其输入特点预先分析并发任务的显存占用情况,以确保并发任务在GPU上的成功共置。此外,多租户场景提交的推理任务亟需灵活的调度策略,以满足并发推理任务的服务质量要求。为了解决上述问题,提出了GNNSched,其在GPU上高效管理GNN推理任务的共置运行。具体来说,GNNSched将并发推理任务组织为队列,并在算子粒度上根据成本函数估算每个任务的显存占用情况。GNNSched实现了多种调度策略来生成任务组,这些任务组被迭代地提交到GPU并发执行。实验结果表明,GNNSched能够满足并发GNN推理任务的服务质量并降低推理任务的响应时延。 展开更多
关键词 图神经网络 图形处理器 推理框架 任务调度 估计模型
下载PDF
基于强化联邦GNN的个性化公共安全突发事件检测
19
作者 管泽礼 杜军平 +3 位作者 薛哲 王沛文 潘圳辉 王晓阳 《软件学报》 EI CSCD 北大核心 2024年第4期1774-1789,共16页
近年来,将公共安全数据转换为图的形式,通过图神经网络(GNN)构造节点表示应用于下游任务的方法,充分利用了公共安全数据的实体与关联信息,取得了较好的效果.为了提高模型的有效性,需要大量的高质量数据,但是高质量的数据通常归属于政府... 近年来,将公共安全数据转换为图的形式,通过图神经网络(GNN)构造节点表示应用于下游任务的方法,充分利用了公共安全数据的实体与关联信息,取得了较好的效果.为了提高模型的有效性,需要大量的高质量数据,但是高质量的数据通常归属于政府、公司和组织,很难通过数据集中的方式使模型学习到有效的事件检测模型.由于各数据拥有方的关注主题与收集时间不同,数据之间存在Non-IID的问题.传统的假设一个全局模型可以适合所有客户端的方法难以解决此类问题.提出了基于强化联邦图神经网络的个性化公共安全突发事件检测方法PPSED,各客户端采用多方协作的方式训练个性化的模型来解决本地的突发事件检测任务.设计了联邦公共安全突发事件检测模型的本地训练与梯度量化模块,采用基于图采样的minibatch机制的GraphSage构造公共安全突发事件检测本地模型,以减小数据Non-IID的影响,采用梯度量化方法减小梯度通信的消耗.设计了基于随机图嵌入的客户端状态感知模块,在保护隐私的同时,更好地保留客户端模型有价值的梯度信息.设计了强化联邦图神经网络的个性化梯度聚合与量化策略,采用DDPG拟合个性化联邦学习梯度聚合加权策略,并根据权重决定是否对梯度进行量化,对模型的性能与通信压力进行平衡.通过在微博平台收集的公共安全数据集和3个公开的图数据集进行了大量的实验,实验结果表明了所提方法的有效性. 展开更多
关键词 联邦学习 图神经网络(gnn) 公共安全 突发事件检测
下载PDF
Using BlazePose on Spatial Temporal Graph Convolutional Networks for Action Recognition
20
作者 Motasem S.Alsawadi El-Sayed M.El-kenawy Miguel Rio 《Computers, Materials & Continua》 SCIE EI 2023年第1期19-36,共18页
The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extrac... The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively. 展开更多
关键词 Action recognition BlazePose graph neural network OpenPose SKELETON spatial temporal graph convolution network
下载PDF
上一页 1 2 92 下一页 到第
使用帮助 返回顶部