A subset S of V is called a k-connected dominating set if S is a dominating set and the induced subgraph S has at most k components.The k-connected domination number γck(G) of G is the minimum cardinality taken ove...A subset S of V is called a k-connected dominating set if S is a dominating set and the induced subgraph S has at most k components.The k-connected domination number γck(G) of G is the minimum cardinality taken over all minimal k-connected dominating sets of G.In this paper,we characterize trees and unicyclic graphs with equal connected domination and 2-connected domination numbers.展开更多
Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16...Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16fc53d.png" width="79" height="20" alt="" /> is said to be a Signed Dominating Function (SDF) if <img src="Edit_c6e63805-bcaa-46a9-bc77-42750af8efd4.png" width="135" height="25" alt="" /> holds for all <img src="Edit_bba1b366-af70-46cd-aefe-fc68869da670.png" width="42" height="20" alt="" />. The signed domination number <img src="Edit_22e6d87a-e3be-4037-b4b6-c1de6a40abb0.png" width="284" height="25" alt="" />. In this paper, we determine the exact value of the Signed Domination Number of graphs <img src="Edit_36ef2747-da44-4f9b-a10a-340c61a3f28c.png" width="19" height="20" alt="" /> and <img src="Edit_26eb0f74-fcc2-49ad-8567-492cf3115b73.png" width="19" height="20" alt="" /> for <img src="Edit_856dbcc1-d215-4144-b50c-ac8a225d664f.png" width="32" height="20" alt="" />, which is generalized the known results, respectively, where <img src="Edit_4b7e4f8f-5d38-4fd0-ac4e-dd8ef243029f.png" width="19" height="20" alt="" /> and <img src="Edit_6557afba-e697-4397-994e-a9bda83e3219.png" width="19" height="20" alt="" /> are denotes the <em>k</em>-th power graphs of cycle <img src="Edit_27e6e80f-85d5-4208-b367-a757a0e55d0b.png" width="21" height="20" alt="" /> and path <img src="Edit_70ac5266-950b-4bfd-8d04-21711d3ffc33.png" width="18" height="20" alt="" />.展开更多
Generalized Petersen graphs are an important class of commonly used interconnection networks and have been studied . The total domination number of generalized Petersen graphs P(m,2) is obtained in this paper.
A set D of vertices of a graph G = (V, E) is called k-dominating if every vertex v ∈V-D is adjacent to some k vertices of D. The k-domination number of a graph G, γk (G), is the order of a smallest k-dominating set ...A set D of vertices of a graph G = (V, E) is called k-dominating if every vertex v ∈V-D is adjacent to some k vertices of D. The k-domination number of a graph G, γk (G), is the order of a smallest k-dominating set of G. In this paper we calculate the k-domination number (for k = 2) of the product of two paths Pm × Pn for m = 1, 2, 3, 4, 5 and arbitrary n. These results were shown an error in the paper [1].展开更多
Let G=(V, E) be a simple graph without an isolate. A subset T of V is a total dominating set of G if for any there exists at least one vertex such that .The total domination number γ1(G) of G is the minimum order of...Let G=(V, E) be a simple graph without an isolate. A subset T of V is a total dominating set of G if for any there exists at least one vertex such that .The total domination number γ1(G) of G is the minimum order of a total dominating set of G. This paper proves that if G is a connected graph with n≥3 vertices and minimum degree at least two.展开更多
Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination numbe...Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination number of G is defined as γ′sc(G) = min{∑e∈E f(e)| f is an SCDF of G}. This paper will characterize all maxima] planar graphs G with order n ≥ 6 and γ′sc(G) =n.展开更多
Let G be a connected graph of order p, and let γ7(G) denote the domination number of G. Clearly, γ(G) ≤[p/2]. The aim of this paper is to characterize the graphs G that reaches this upper bound. The main results ar...Let G be a connected graph of order p, and let γ7(G) denote the domination number of G. Clearly, γ(G) ≤[p/2]. The aim of this paper is to characterize the graphs G that reaches this upper bound. The main results are as follows: (1) when p is even, γ(G) = p/2 if and only if either G C4 or G is the crown of a connected graph with p/2 vertices; (2) when p is odd, γ(G) = (p-1)/2 if and only if every spanning tree of G is one of the two classes of trees shown in Theorem 3.1.展开更多
Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function ?is called a signed dominating function (SDF) if ?for each vertex . The weight ?of f is defined by . The signed domination numb...Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function ?is called a signed dominating function (SDF) if ?for each vertex . The weight ?of f is defined by . The signed domination number of a digraph D is . Let Cm × Cn denotes the cartesian product of directed cycles of length m and n. In this paper, we determine the exact values of gs(Cm × Cn) for m = 8, 9, 10 and arbitrary n. Also, we give the exact value of gs(Cm × Cn) when m, ?(mod 3) and bounds for otherwise.展开更多
We investigate the dominating-c-color number,, of a graph G. That is the maximum number of color classes that are also dominating when G is colored using colors. We show that where is the join of G and . This result a...We investigate the dominating-c-color number,, of a graph G. That is the maximum number of color classes that are also dominating when G is colored using colors. We show that where is the join of G and . This result allows us to construct classes of graphs such that and thus provide some information regarding two questions raised in [1] and [2].展开更多
Let γ f(G) and γ~t f(G) be the fractional domination number and fractional total domination number of a graph G respectively. Hare and Stewart gave some exact fractional domination number of P n...Let γ f(G) and γ~t f(G) be the fractional domination number and fractional total domination number of a graph G respectively. Hare and Stewart gave some exact fractional domination number of P n×P m (grid graph) with small n and m . But for large n and m , it is difficult to decide the exact fractional domination number. Motivated by this, nearly sharp upper and lower bounds are given to the fractional domination number of grid graphs. Furthermore, upper and lower bounds on the fractional total domination number of strong direct product of graphs are given.展开更多
The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, ...The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, r f(G) , is defined to be the minimum cardinality of a set of edges which when added to G results in a graph G′ satisfying γ f(G′)< γ f(G) . G.S.Domke and R.C.Laskar initiated the study of them and gave exact values of b f(G) and r f(G) for some classes of graphs. Exact values of b f(G) and r f(G) for complete multipartite graphs are given and some results are extended.展开更多
Let <em>G</em>(<em>V</em>, <em>E</em>) be a finite connected simple graph with vertex set <em>V</em>(<em>G</em>). A function is a signed dominating function ...Let <em>G</em>(<em>V</em>, <em>E</em>) be a finite connected simple graph with vertex set <em>V</em>(<em>G</em>). A function is a signed dominating function <em>f </em>: <em style="white-space:normal;">V</em><span style="white-space:normal;">(</span><em style="white-space:normal;">G</em><span style="white-space:normal;">)</span><span style="white-space:nowrap;">→{<span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1,1}</span> if for every vertex <em>v</em> <span style="white-space:nowrap;">∈</span> <em>V</em>(<em>G</em>), the sum of closed neighborhood weights of <em>v</em> is greater or equal to 1. The signed domination number <em>γ</em><sub>s</sub>(<em>G</em>) of <em>G</em> is the minimum weight of a signed dominating function on <em>G</em>. In this paper, we calculate the signed domination numbers of the Cartesian product of two paths <em>P</em><sub><em>m</em></sub> and <em>P</em><sub><em>n</em></sub> for <em>m</em> = 6, 7 and arbitrary <em>n</em>.展开更多
We investigate how the algebraic connectivity of a graph changes by relocating a connected branch from one vertex to another vertex, and then minimize the algebraic connectivity among all connected graphs of order n w...We investigate how the algebraic connectivity of a graph changes by relocating a connected branch from one vertex to another vertex, and then minimize the algebraic connectivity among all connected graphs of order n with fixed domination number γ≤(n+2)/3, and finally present a lower bound for the algebraic connectivity in terms of the domination number. We also characterize the minimum algebraic connectivity of graphs with domination number half their order.展开更多
The bondage number of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph a domination number greater than the domination number of G. In this paper, we prove that ...The bondage number of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph a domination number greater than the domination number of G. In this paper, we prove that for a 1-planar graph G.展开更多
The edge-domsaturation number ds'(G) of a graph G = (V, E) is the least positive integer k such that every edge of G lies in an edge dominating set of cardinality k. In this paper, we characterize unicyclic graphs...The edge-domsaturation number ds'(G) of a graph G = (V, E) is the least positive integer k such that every edge of G lies in an edge dominating set of cardinality k. In this paper, we characterize unicyclic graphs G with ds'(G) = q – Δ'(G) + 1 and investigate well-edge dominated graphs. We further define γ'–-critical, γ'+-critical, ds'–-critical, ds'+-critical edges and study some of their properties.展开更多
In the eternal dominating set problem, guards form a dominating set on a graph and at each step, a vertex is attacked. We consider the “all guards move” of the eternal dominating set problem. In which one guard has ...In the eternal dominating set problem, guards form a dominating set on a graph and at each step, a vertex is attacked. We consider the “all guards move” of the eternal dominating set problem. In which one guard has to move to the attacked vertex and all the remaining guards are allowed to move to an adjacent vertex or stay in their current position after each attack. If the new formed set of guards is still a dominating set of the graph then we successfully defended the attack. Our goal is to find the minimum number of guards required to eternally protect the graph. We call this number the m-eternal domination number and we denote it by . In this paper we find the eternal domination number of Jahangir graph Js,m for s=2,3 and arbitrary m. We also find the domination number for J3,m .展开更多
Let G= (V, E) be a graph and A(G) is the collection of all minimal equitable dominating set of G. The middle equitable dominating graph of G is the graph denoted by Med(G) with vertex set the disjoint union of V∪A(G)...Let G= (V, E) be a graph and A(G) is the collection of all minimal equitable dominating set of G. The middle equitable dominating graph of G is the graph denoted by Med(G) with vertex set the disjoint union of V∪A(G) and (u, v) is an edge if and only if u ∩ v ≠ φ whenever u, v ∈ A(G) or u ∈ v whenever u ∈ v and v ∈ A(G) . In this paper, characterizations are given for graphs whose middle equitable dominating graph is connected and Kp∈Med(G) . Other properties of middle equitable dominating graphs are also obtained.展开更多
A set D of vertices of a graph G = (V, E) is called a dominating set if every vertex of V not in D is adjacent to a vertex of D. In 1996, Reed proved that every graph of order n with minimum degree at least 3 has a ...A set D of vertices of a graph G = (V, E) is called a dominating set if every vertex of V not in D is adjacent to a vertex of D. In 1996, Reed proved that every graph of order n with minimum degree at least 3 has a dominating set of cardinality at most 3n/8. In this paper we generalize Reed's result. We show that every graph G of order n with minimum degree at least 2 has a dominating set of cardinality at most (3n +IV21)/8, where V2 denotes the set of vertices of degree 2 in G. As an application of the above result, we show that for k ≥ 1, the k-restricted domination number rk (G, γ) ≤ (3n+5k)/8 for all graphs of order n with minimum degree at least 3.展开更多
Each vertex of a graph G = (V, E) is said to dominate every vertex in its closed neighborhood. A set S C V is a double dominating set for G if each vertex in V is dominated by at least two vertices in S. The smalles...Each vertex of a graph G = (V, E) is said to dominate every vertex in its closed neighborhood. A set S C V is a double dominating set for G if each vertex in V is dominated by at least two vertices in S. The smallest cardinality of a double dominating set is called the double dominating number dd(G). In this paper, new relationships between dd(G) and other domination parameters are explored and some results of [1] are extended. Furthermore, we give the Nordhaus-Gaddum-type results for double dominating number.展开更多
文摘A subset S of V is called a k-connected dominating set if S is a dominating set and the induced subgraph S has at most k components.The k-connected domination number γck(G) of G is the minimum cardinality taken over all minimal k-connected dominating sets of G.In this paper,we characterize trees and unicyclic graphs with equal connected domination and 2-connected domination numbers.
文摘Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16fc53d.png" width="79" height="20" alt="" /> is said to be a Signed Dominating Function (SDF) if <img src="Edit_c6e63805-bcaa-46a9-bc77-42750af8efd4.png" width="135" height="25" alt="" /> holds for all <img src="Edit_bba1b366-af70-46cd-aefe-fc68869da670.png" width="42" height="20" alt="" />. The signed domination number <img src="Edit_22e6d87a-e3be-4037-b4b6-c1de6a40abb0.png" width="284" height="25" alt="" />. In this paper, we determine the exact value of the Signed Domination Number of graphs <img src="Edit_36ef2747-da44-4f9b-a10a-340c61a3f28c.png" width="19" height="20" alt="" /> and <img src="Edit_26eb0f74-fcc2-49ad-8567-492cf3115b73.png" width="19" height="20" alt="" /> for <img src="Edit_856dbcc1-d215-4144-b50c-ac8a225d664f.png" width="32" height="20" alt="" />, which is generalized the known results, respectively, where <img src="Edit_4b7e4f8f-5d38-4fd0-ac4e-dd8ef243029f.png" width="19" height="20" alt="" /> and <img src="Edit_6557afba-e697-4397-994e-a9bda83e3219.png" width="19" height="20" alt="" /> are denotes the <em>k</em>-th power graphs of cycle <img src="Edit_27e6e80f-85d5-4208-b367-a757a0e55d0b.png" width="21" height="20" alt="" /> and path <img src="Edit_70ac5266-950b-4bfd-8d04-21711d3ffc33.png" width="18" height="20" alt="" />.
文摘Generalized Petersen graphs are an important class of commonly used interconnection networks and have been studied . The total domination number of generalized Petersen graphs P(m,2) is obtained in this paper.
文摘A set D of vertices of a graph G = (V, E) is called k-dominating if every vertex v ∈V-D is adjacent to some k vertices of D. The k-domination number of a graph G, γk (G), is the order of a smallest k-dominating set of G. In this paper we calculate the k-domination number (for k = 2) of the product of two paths Pm × Pn for m = 1, 2, 3, 4, 5 and arbitrary n. These results were shown an error in the paper [1].
文摘Let G=(V, E) be a simple graph without an isolate. A subset T of V is a total dominating set of G if for any there exists at least one vertex such that .The total domination number γ1(G) of G is the minimum order of a total dominating set of G. This paper proves that if G is a connected graph with n≥3 vertices and minimum degree at least two.
基金Supported by Doctoral Scientific Research Fund of Harbin Normal University(Grant No.KGB201008)
文摘Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination number of G is defined as γ′sc(G) = min{∑e∈E f(e)| f is an SCDF of G}. This paper will characterize all maxima] planar graphs G with order n ≥ 6 and γ′sc(G) =n.
基金Supported by the National Science Foundation of Jiangxi province.
文摘Let G be a connected graph of order p, and let γ7(G) denote the domination number of G. Clearly, γ(G) ≤[p/2]. The aim of this paper is to characterize the graphs G that reaches this upper bound. The main results are as follows: (1) when p is even, γ(G) = p/2 if and only if either G C4 or G is the crown of a connected graph with p/2 vertices; (2) when p is odd, γ(G) = (p-1)/2 if and only if every spanning tree of G is one of the two classes of trees shown in Theorem 3.1.
文摘Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function ?is called a signed dominating function (SDF) if ?for each vertex . The weight ?of f is defined by . The signed domination number of a digraph D is . Let Cm × Cn denotes the cartesian product of directed cycles of length m and n. In this paper, we determine the exact values of gs(Cm × Cn) for m = 8, 9, 10 and arbitrary n. Also, we give the exact value of gs(Cm × Cn) when m, ?(mod 3) and bounds for otherwise.
文摘We investigate the dominating-c-color number,, of a graph G. That is the maximum number of color classes that are also dominating when G is colored using colors. We show that where is the join of G and . This result allows us to construct classes of graphs such that and thus provide some information regarding two questions raised in [1] and [2].
文摘Let γ f(G) and γ~t f(G) be the fractional domination number and fractional total domination number of a graph G respectively. Hare and Stewart gave some exact fractional domination number of P n×P m (grid graph) with small n and m . But for large n and m , it is difficult to decide the exact fractional domination number. Motivated by this, nearly sharp upper and lower bounds are given to the fractional domination number of grid graphs. Furthermore, upper and lower bounds on the fractional total domination number of strong direct product of graphs are given.
文摘The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, r f(G) , is defined to be the minimum cardinality of a set of edges which when added to G results in a graph G′ satisfying γ f(G′)< γ f(G) . G.S.Domke and R.C.Laskar initiated the study of them and gave exact values of b f(G) and r f(G) for some classes of graphs. Exact values of b f(G) and r f(G) for complete multipartite graphs are given and some results are extended.
文摘Let <em>G</em>(<em>V</em>, <em>E</em>) be a finite connected simple graph with vertex set <em>V</em>(<em>G</em>). A function is a signed dominating function <em>f </em>: <em style="white-space:normal;">V</em><span style="white-space:normal;">(</span><em style="white-space:normal;">G</em><span style="white-space:normal;">)</span><span style="white-space:nowrap;">→{<span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1,1}</span> if for every vertex <em>v</em> <span style="white-space:nowrap;">∈</span> <em>V</em>(<em>G</em>), the sum of closed neighborhood weights of <em>v</em> is greater or equal to 1. The signed domination number <em>γ</em><sub>s</sub>(<em>G</em>) of <em>G</em> is the minimum weight of a signed dominating function on <em>G</em>. In this paper, we calculate the signed domination numbers of the Cartesian product of two paths <em>P</em><sub><em>m</em></sub> and <em>P</em><sub><em>n</em></sub> for <em>m</em> = 6, 7 and arbitrary <em>n</em>.
基金Supported by the National Natural Science Foundation of China(No.11871073,11801007)Natural Science Foundation of Anhui Province(No.1808085MA17)
文摘We investigate how the algebraic connectivity of a graph changes by relocating a connected branch from one vertex to another vertex, and then minimize the algebraic connectivity among all connected graphs of order n with fixed domination number γ≤(n+2)/3, and finally present a lower bound for the algebraic connectivity in terms of the domination number. We also characterize the minimum algebraic connectivity of graphs with domination number half their order.
文摘The bondage number of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph a domination number greater than the domination number of G. In this paper, we prove that for a 1-planar graph G.
文摘The edge-domsaturation number ds'(G) of a graph G = (V, E) is the least positive integer k such that every edge of G lies in an edge dominating set of cardinality k. In this paper, we characterize unicyclic graphs G with ds'(G) = q – Δ'(G) + 1 and investigate well-edge dominated graphs. We further define γ'–-critical, γ'+-critical, ds'–-critical, ds'+-critical edges and study some of their properties.
文摘In the eternal dominating set problem, guards form a dominating set on a graph and at each step, a vertex is attacked. We consider the “all guards move” of the eternal dominating set problem. In which one guard has to move to the attacked vertex and all the remaining guards are allowed to move to an adjacent vertex or stay in their current position after each attack. If the new formed set of guards is still a dominating set of the graph then we successfully defended the attack. Our goal is to find the minimum number of guards required to eternally protect the graph. We call this number the m-eternal domination number and we denote it by . In this paper we find the eternal domination number of Jahangir graph Js,m for s=2,3 and arbitrary m. We also find the domination number for J3,m .
文摘Let G= (V, E) be a graph and A(G) is the collection of all minimal equitable dominating set of G. The middle equitable dominating graph of G is the graph denoted by Med(G) with vertex set the disjoint union of V∪A(G) and (u, v) is an edge if and only if u ∩ v ≠ φ whenever u, v ∈ A(G) or u ∈ v whenever u ∈ v and v ∈ A(G) . In this paper, characterizations are given for graphs whose middle equitable dominating graph is connected and Kp∈Med(G) . Other properties of middle equitable dominating graphs are also obtained.
基金supported by Korea Research Foundation Grant (KRF-2002-015-cp0050)the National Natural Science Foundation of China (Grant Nos. 60773078, 10571117)+3 种基金the ShuGuang Plan of Shanghai Education Development Foundation (Grant No. 06SG42)M. A. Henning is supported in part by the South African National Research Foundationthe University of KwaZulu-Natalsupported by Shanghai Leading Academic Discipline Project (No. $30104)
文摘A set D of vertices of a graph G = (V, E) is called a dominating set if every vertex of V not in D is adjacent to a vertex of D. In 1996, Reed proved that every graph of order n with minimum degree at least 3 has a dominating set of cardinality at most 3n/8. In this paper we generalize Reed's result. We show that every graph G of order n with minimum degree at least 2 has a dominating set of cardinality at most (3n +IV21)/8, where V2 denotes the set of vertices of degree 2 in G. As an application of the above result, we show that for k ≥ 1, the k-restricted domination number rk (G, γ) ≤ (3n+5k)/8 for all graphs of order n with minimum degree at least 3.
基金the National Natural Science Foundation of China (19871036)
文摘Each vertex of a graph G = (V, E) is said to dominate every vertex in its closed neighborhood. A set S C V is a double dominating set for G if each vertex in V is dominated by at least two vertices in S. The smallest cardinality of a double dominating set is called the double dominating number dd(G). In this paper, new relationships between dd(G) and other domination parameters are explored and some results of [1] are extended. Furthermore, we give the Nordhaus-Gaddum-type results for double dominating number.