Let G be a simple graph and let Q(G) be the signless Laplacian matrix of G. In this paper we obtain some results on the spectral perturbation of the matrix Q(G) under an edge addition or an edge contraction.
A weighted graph is a graph that has a numeric label associated with each edge, called the weight of edge. In many applications, the edge weights are usually represented by nonnegative integers or square matrices. The...A weighted graph is a graph that has a numeric label associated with each edge, called the weight of edge. In many applications, the edge weights are usually represented by nonnegative integers or square matrices. The weighted signless Laplacian matrix of a weighted graph is defined as the sum of adjacency matrix and degree matrix of same weighted graph. In this paper, a brief overview of the notation and concepts of weighted graphs that will be used throughout this study is given. In Section 2, the weighted signless Laplacian matrix of simple connected weighted graphs is considered, some upper bounds for the spectral radius of the weighted signless Laplacian matrix are obtained and some results on weighted and unweighted graphs are found.展开更多
Let G be a simple graph with n vertices and m edges. In this paper, we present some new upper bounds for the adjacency and the signless Laplacian spectral radius of graphs in which every pair of adjacent vertices has ...Let G be a simple graph with n vertices and m edges. In this paper, we present some new upper bounds for the adjacency and the signless Laplacian spectral radius of graphs in which every pair of adjacent vertices has at least one common adjacent vertex. Our results improve some known upper bounds. The main tool we use here is the Lagrange identity.展开更多
A k-cyclic graph is a connected graph of order n and size n + k-1. In this paper, we determine the maximal signless Laplacian spectral radius and the corresponding extremal graph among all C_4-free k-cyclic graphs of ...A k-cyclic graph is a connected graph of order n and size n + k-1. In this paper, we determine the maximal signless Laplacian spectral radius and the corresponding extremal graph among all C_4-free k-cyclic graphs of order n. Furthermore, we determine the first three unicycles and bicyclic, C_4-free graphs whose spectral radius of the signless Laplacian is maximal. Similar results are obtained for the(combinatorial)展开更多
This paper mainly researches on the signless laplacian spectral radius of bipartite graphs Dr(m1,m2;n1,n2). We consider how the signless laplacian spectral radius of Dr(m1,m2;n1,n2)?changes under some special cases. A...This paper mainly researches on the signless laplacian spectral radius of bipartite graphs Dr(m1,m2;n1,n2). We consider how the signless laplacian spectral radius of Dr(m1,m2;n1,n2)?changes under some special cases. As application, we give two upper bounds on the signless laplacian spectral radius of Dr(m1,m2;n1,n2), and determine the graphs that obtain the upper bounds.展开更多
We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration. It is based on matrix perturbation analysis on the spectral grap...We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration. It is based on matrix perturbation analysis on the spectral graph. The contribution may be divided into three parts. Firstly, the perturbation matrix is obtained by perturbing the matrix of graph model. Secondly, an orthogonal matrix is obtained based on an optimal parameter, which can better capture correspondence features. Thirdly, the optimal matching matrix is proposed by adjusting signs of orthogonal matrix for image registration. Experiments on both synthetic images and real-world images demonstrate the effectiveness and accuracy of the proposed method.展开更多
In this paper,we determine graphs with the largest Laplacian spectral radius among the unicyclic and the bicyclic graphs on n vertices with k pendant vertices,respectively.
A signed graph G˙=(G,σ)is a graph G=(V(G),E(G))with vertex set V(G)and edge set E(G),together with a functionσ:E→{+1,−1}assigning a positive or negative sign to each edge.In this paper,we present a more elementary...A signed graph G˙=(G,σ)is a graph G=(V(G),E(G))with vertex set V(G)and edge set E(G),together with a functionσ:E→{+1,−1}assigning a positive or negative sign to each edge.In this paper,we present a more elementary proof for the matrix-tree theorem of signed graphs,which is based on the relations between the incidence matrices and the Laplcians of signed graphs.As an application,we also obtain the results of Monfared and Mallik about the matrix-tree theorem of graphs for signless Laplacians.展开更多
The weighted graphs, where the edge weights are positive numbers, are considered. The authors obtain some lower bounds on the spectral radius and the Laplacian spectral radius of weighted graphs, and characterize the ...The weighted graphs, where the edge weights are positive numbers, are considered. The authors obtain some lower bounds on the spectral radius and the Laplacian spectral radius of weighted graphs, and characterize the graphs for which the bounds are attained. Moreover, some known lower bounds on the spectral radius and the Laplacian spectral radius of unweighted graphs can be deduced from the bounds.展开更多
Suppose that the vertex set of a graph G is V(G) ={v1,v2,...,vn}.The transmission Tr(vi) (or Di) of vertex vi is defined to be the sum of distances from vi to all other vertices.Let Tr(G) be the n × n diagonal ma...Suppose that the vertex set of a graph G is V(G) ={v1,v2,...,vn}.The transmission Tr(vi) (or Di) of vertex vi is defined to be the sum of distances from vi to all other vertices.Let Tr(G) be the n × n diagonal matrix with its (i,i)-entry equal to TrG(vi).The distance signless Laplacian spectral radius of a connected graph G is the spectral radius of the distance signless Laplacian matrix of G,defined as L(G) =Tr(G) + D(G),where D(G) is the distance matrix of G.In this paper,we give a lower bound on the distance signless Laplacian spectral radius of graphs and characterize graphs for which these bounds are best possible.We obtain a lower bound on the second largest distance signless Laplacian eigenvalue of graphs.Moreover,we present lower bounds on the spread of distance signless Laplacian matrix of graphs and trees,and characterize extremal graphs.展开更多
基金Supported by the National Natural Science Foundation of China(11071002)the Anhui Natural ScienceFoundation of China(11040606M14)NSF of Department of Education of Anhui Province(KJ2011A195)
文摘Let G be a simple graph and let Q(G) be the signless Laplacian matrix of G. In this paper we obtain some results on the spectral perturbation of the matrix Q(G) under an edge addition or an edge contraction.
文摘A weighted graph is a graph that has a numeric label associated with each edge, called the weight of edge. In many applications, the edge weights are usually represented by nonnegative integers or square matrices. The weighted signless Laplacian matrix of a weighted graph is defined as the sum of adjacency matrix and degree matrix of same weighted graph. In this paper, a brief overview of the notation and concepts of weighted graphs that will be used throughout this study is given. In Section 2, the weighted signless Laplacian matrix of simple connected weighted graphs is considered, some upper bounds for the spectral radius of the weighted signless Laplacian matrix are obtained and some results on weighted and unweighted graphs are found.
基金Supported by the National Natural Science Foundation of China(11471077)the Open Research Fund of Key Laboratory of Spatial Data Mining and Information Sharing of MOE(2018LSDMIS09)Foundation of Key Laboratory of Intelligent Metro of Universities in Fujian Province(53001703)
文摘Let G be a simple graph with n vertices and m edges. In this paper, we present some new upper bounds for the adjacency and the signless Laplacian spectral radius of graphs in which every pair of adjacent vertices has at least one common adjacent vertex. Our results improve some known upper bounds. The main tool we use here is the Lagrange identity.
基金Supported by the National Natural Science Foundation of China(11171273) Supported by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical Uni- versity(Z2016170)
文摘A k-cyclic graph is a connected graph of order n and size n + k-1. In this paper, we determine the maximal signless Laplacian spectral radius and the corresponding extremal graph among all C_4-free k-cyclic graphs of order n. Furthermore, we determine the first three unicycles and bicyclic, C_4-free graphs whose spectral radius of the signless Laplacian is maximal. Similar results are obtained for the(combinatorial)
文摘This paper mainly researches on the signless laplacian spectral radius of bipartite graphs Dr(m1,m2;n1,n2). We consider how the signless laplacian spectral radius of Dr(m1,m2;n1,n2)?changes under some special cases. As application, we give two upper bounds on the signless laplacian spectral radius of Dr(m1,m2;n1,n2), and determine the graphs that obtain the upper bounds.
基金supported by the National Natural Science Foundation of China (No.60375003)the Aeronautics and Astronautics Basal Science Foundation of China (No.03I53059)the Science and Technology Innovation Foundation of Northwestern Polytechnical University (No.2007KJ01033)
文摘We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration. It is based on matrix perturbation analysis on the spectral graph. The contribution may be divided into three parts. Firstly, the perturbation matrix is obtained by perturbing the matrix of graph model. Secondly, an orthogonal matrix is obtained based on an optimal parameter, which can better capture correspondence features. Thirdly, the optimal matching matrix is proposed by adjusting signs of orthogonal matrix for image registration. Experiments on both synthetic images and real-world images demonstrate the effectiveness and accuracy of the proposed method.
基金supported by National Natural Science Foundation of China (Grant No.10871204)the Fundamental Research Funds for the Central Universities (Grant No.09CX04003A)
文摘In this paper,we determine graphs with the largest Laplacian spectral radius among the unicyclic and the bicyclic graphs on n vertices with k pendant vertices,respectively.
文摘A signed graph G˙=(G,σ)is a graph G=(V(G),E(G))with vertex set V(G)and edge set E(G),together with a functionσ:E→{+1,−1}assigning a positive or negative sign to each edge.In this paper,we present a more elementary proof for the matrix-tree theorem of signed graphs,which is based on the relations between the incidence matrices and the Laplcians of signed graphs.As an application,we also obtain the results of Monfared and Mallik about the matrix-tree theorem of graphs for signless Laplacians.
基金supported by the National Natural Science Foundation of China(Nos.11101027,11071115,10971114,10990011,11171097)the Fundamental Research Funds for the Central Universities of China(No.2011JBM136)
文摘The weighted graphs, where the edge weights are positive numbers, are considered. The authors obtain some lower bounds on the spectral radius and the Laplacian spectral radius of weighted graphs, and characterize the graphs for which the bounds are attained. Moreover, some known lower bounds on the spectral radius and the Laplacian spectral radius of unweighted graphs can be deduced from the bounds.
基金The authors are grateful to the two anonymous referees for their careful reading of this paper and strict criticisms, constructive corrections, and valuable comments on this paper, which have considerably improved the presentation of this paperThe first author was supported by the National Research Foundation of the Korean government with grant No. 2017R1D1A1B03028642+2 种基金The second author was supported by the National Natural Science Foundation of China (Grant No. 11771141)the Fundamental Research Fund for the Central Universities (No. 222201714049)The third author was supported by the National Natural Science Foundation of China (Grant No. 11371372).
文摘Suppose that the vertex set of a graph G is V(G) ={v1,v2,...,vn}.The transmission Tr(vi) (or Di) of vertex vi is defined to be the sum of distances from vi to all other vertices.Let Tr(G) be the n × n diagonal matrix with its (i,i)-entry equal to TrG(vi).The distance signless Laplacian spectral radius of a connected graph G is the spectral radius of the distance signless Laplacian matrix of G,defined as L(G) =Tr(G) + D(G),where D(G) is the distance matrix of G.In this paper,we give a lower bound on the distance signless Laplacian spectral radius of graphs and characterize graphs for which these bounds are best possible.We obtain a lower bound on the second largest distance signless Laplacian eigenvalue of graphs.Moreover,we present lower bounds on the spread of distance signless Laplacian matrix of graphs and trees,and characterize extremal graphs.